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Archival tumor samples represent a rich resource of annotated specimens for

translational genomics research. However, standard variant calling approaches require

a matched normal sample from the same individual, which is often not available

in the retrospective setting, making it difficult to distinguish between true somatic

variants and individual-specific germline variants. Archival sections often contain

adjacent normal tissue, but this tissue can include infiltrating tumor cells. As existing

comparative somatic variant callers are designed to exclude variants present in the

normal sample, a novel approach is required to leverage adjacent normal tissue

with infiltrating tumor cells for somatic variant calling. Here we present lumosVar

2.0, a software package designed to jointly analyze multiple samples from the same

patient, built upon our previous single sample tumor only variant caller lumosVar

1.0. The approach assumes that the allelic fraction of somatic variants and germline

variants follow different patterns as tumor content and copy number state change.

lumosVar 2.0 estimates allele specific copy number and tumor sample fractions from

the data, and uses a to model to determine expected allelic fractions for somatic

and germline variants and to classify variants accordingly. To evaluate the utility of

lumosVar 2.0 to jointly call somatic variants with tumor and adjacent normal samples,

we used a glioblastoma dataset with matched high and low tumor content and

germline whole exome sequencing data (for true somatic variants) available for each

patient. Both sensitivity and positive predictive value were improved when analyzing

the high tumor and low tumor samples jointly compared to analyzing the samples

individually or in-silico pooling of the two samples. Finally, we applied this approach

to a set of breast and prostate archival tumor samples for which tumor blocks

containing adjacent normal tissue were available for sequencing. Joint analysis using
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lumosVar 2.0 detected several variants, including known cancer hotspot mutations that

were not detected by standard somatic variant calling tools using the adjacent tissue as

presumed normal reference. Together, these results demonstrate the utility of leveraging

paired tissue samples to improve somatic variant calling when a constitutional sample is

not available.

Keywords: cancer genomics, somatic variant calling, next generation sequencing, tumor-only sequencing, tumor

exome sequencing, cancer hotspot mutations

INTRODUCTION

Somatic mutations often drive cancer initiation and progression.
The identification of somatic mutations through next generation
sequencing has enabled the identification of cancer driver events
in individual patient tumor samples (1–4). There is also ongoing
effort to discover new cancer driver mutations, particularly
in non-coding regions (5). Although sequencing of tumor-
associated cancer gene panels and exomes is starting to be
adopted in clinical practice to personalize therapy, there is much
to learn about how mutation status correlates with response to
therapy. Clinically annotated archival tissue collections represent
a rich resource for identifying new driver mutations and
clarifying how genomic features relate to clinical outcomes
(6, 7). There are a number of sophisticated approaches for
distinguishing driver from passenger mutations, but they all
require accurate variant calls as inputs (8). In order to accurately
distinguish somatic from germline variant, it is important to
have a matched constitutional sample. However, most archival
collections do not contain blood samples or other normal
tissue samples from locations distant to the tumor to use as a
constitutional reference. Here we present a novel approach to get
more accurate somatic variant calls from archival samples.

Often, histologically normal tissue is available alongside the
tumor biopsy or resection. For instance, surgeons typically
remove a margin of adjacent normal tissue when resecting a
tumor. This normal tissue can be leveraged for DNA sequencing
to identify germline variants. However, histologically normal
tissue may still have detectable molecular alterations for a
variety of reasons. For example, it is difficult to know if the
adjacent normal tissue is truly free of infiltrating tumor cells.
Contamination of the adjacent normal tissue with the tumor
tissue during processing could also confound interpretation
of the results (9). Also, even without infiltrating tumor cells,
the adjacent tissue may contain somatic mutations. Field

cancerization, where molecular alterations are observed in tissue
adjacent to the overt cancer, is thought to be an important
risk factor for multifocal and recurrent disease (10). This
phenomenon has been observed in many cancer types including

breast (11) and prostate (12). Even healthy individuals have
somatic mutations in normal tissues, and the mutation patterns
tend to be similar to those of the cancers arising from that tissue

type (13). Clonal hematopoiesis represents a well-documented
example of somatic mutations in a normal tissue. There even
appears to be positive selection for cancer driver mutations
in normal skin (14). Therefore, it is important to consider

potential sources of somatic variant contamination when
normal tumor-adjacent tissue is used to identify tumor specific
somatic variants.

When tumor-only sequencing data is available, researchers
have developed various analytic strategies to distinguish germline
and somatic variants. One obvious first step to identify somatic
variants in tumor-only sequencing data is to filter out the
germline variants found in population databases. Jones et al.
showed that filtering alone is not sufficient, as each individual
typically has an average of 249 private germline variants not
found in the population databases that would be incorrectly
classified as somatic in tumor-only sequencing (15). The number
of private germline variants will vary based on the individual’s
ancestry. The private variant rate in a population depends
both on how well-represented the population is in large scale
sequencing projects, as well as the extent to which the population
has undergone a recent expansion adding to the diversity of
variants (16). More recently, Kalatskaya et al. published a
machine-learning approach (ISOWN) to classify somatic and
germline variants from tumor-only sequencing data (17). Their
approach requires a large training set, and performs best when
the training and test datasets are from the same cancer type
and patient cohort. In the case of rare cancer types and case
studies, obtaining such training sets may not be practical. The
variant allele fraction, which is the fraction of reads supporting
the mutated allele at a given locus, can also help to distinguish
somatic from germline variants in impure tumors; the somatic
variants should only be present in the tumor cells, leading to a
low variant allele fraction, while the germline variants would be
present in both the tumor and normal cells in the sample, leading
to a variant allele fraction close to 0.5 for heterozygous variants.
We, along with several other groups, have previously described
methods to use the variant allele fractions to distinguish somatic
and germline variants including somVarIUS (18), PureCN (19),
and lumosVar 1.0. SomVarIUS assumes that variants with similar
allele fractions to common germline variants within a copy
number segment are germline and those with significantly
different allelic fractions are somatic. Both PureCN and lumosVar
1.0 are conceptually similar in that they explicitly model integer
copy number states and used the expected allelic fractions
of somatic and germline variants to calculate likelihoods that
variants are somatic or germline, though they differ in many of
the model details. PureCN explicitly models tumor purity using
the copy number and germline variant allele fractions, treating
sub-clonal copy number alterations as an exception to the model.
The lumosVar 1.0 model finds groups of both copy number
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FIGURE 1 | Somatic and germline variant allelic fractions example. (A) Two chromosomes are illustrated for this example. Both chromosomes are present in the

diploid state in the normal cell. In the tumor cell, one chromosome is in the diploid state, and the other shows one-copy gain. Blue circles represent somatic variants

on the diploid chromosome, green and red circles represent somatic variants on the minor and major alleles of the gained chromosome, respectively. Simulated allelic

fractions of germline variants (brown/tan) and somatic variants are plotted for a simulated 20% tumor (D), 50% tumor (E) and 80% tumor (F) by chromosome

position. In the 50% tumor example, somatic variants could easily be distinguished from germline on the diploid chromosome, but on the copy number gain

chromosome, the allelic fractions of the somatic variants on the major allele overlap with the germline variants. By using both the 20 and 80% tumor samples, the

somatic variants can be separated from the germline variants by allelic fraction on both the diploid chromosome (B) and the copy number gain chromosome (C).

alterations and somatic mutations that appear to occur in the
same fraction of cells in the sample, thus treating sub-clonal
variants more explicitly and allowing somatic mutations to
inform the estimate of tumor purity. PureCN requires mutation
calls as input and only removes variants that do not appear
diploid in a set of unmatched normal, while lumosVar 1.0 does
its own variant calling and quality filtering, taking into account
both unmatched normal data and the tumor itself. A major
limitation that all of these approaches have in common is that
some combinations of copy number alterations and tumor purity
can lead to considerable overlap in the expected somatic and
germline variant allele fractions and greatly reduce the power to
detect somatic variants (Figure 1). Thus, there is a need for new
bioinformatics methods to call germline and somatic variants
from tumor samples with high sensitivity and precision, even in
the absence of a germline sample.

Here, we present a new bioinformatics approach (lumosVar
2.0) that leverages adjacent normal tissue from tumor biopsies
and permits somatic mutations to be present in the adjacent
tissue. Similar to our previous approach (lumosVar 1.0—single
sample-based variant caller) (16), we model allelic copy number
to determine the expected allelic fractions for somatic and
germline variants as well as incorporate population database
frequencies to call variants as somatic or germline. We have
extended the approach to find the joint probability of somatic
and germline mutations across multiple samples from the same
patient. We hypothesize that the patterns of allelic fractions
across samples of different purities will be more informative
than any individual sample in distinguishing somatic from
germline variants (Figure 1). To test this hypothesis, we compare
two approaches (1) jointly calling variants using two samples
of different purities (joint approach) and (2) pooling the two
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samples resulting in one sample with twice the sequencing depth
and the average of the purities (pooled approach). First, we used
simulations to systematically evaluate the effects of tumor purity
and copy number states for the two approaches. Next, we looked
at a set of glioblastoma (GBM) patient samples where we have
sequencing data for contrast-enhancing region (CE, high fraction
of tumor cells) and non-enhancing region (NE, low fraction of
tumor cells) biopsies, as well as sequencing data from peripheral
blood samples to establish true somatic calls. Finally, we applied
our method to an archival cohort of breast and prostate samples
where FFPE sections from the tumor biopsies or resections were
the only tissues available.

METHODS

Simulations
We used simulated read count data to systematically determine
how the purity of the two tumor samples, the copy number, and
the read depth affect our ability to detect somatic variants. The
simulations were performed as previously described (16), where
the total read depths were drawn from a log normal distribution
and the number of reads supporting the variant were drawn
from a binomial distribution with a probability of success of the
expected allelic fraction given the tumor purity and copy number
state. We simulated 1,000 somatic variants and 10,000 germline
heterozygous variants for each coverage level and copy number
state. To evaluate how the joint calling approach compares to the
single sample approach, we added the read depths of each pair of
simulated tumor samples used jointly.

Evaluation Dataset
A set of previously collected and de-identified whole exome
data from seven recurrent GBM patients was used to evaluate
the approach (Table 1). Each patient dataset contained exome
sequencing data for CE biopsies (high tumor content), NE
biopsies (low tumor content), and peripheral blood (germline).
The acquisition and sequencing of these samples was performed
following IRB approval and patient informed consent, as
previously described (20). The consensus of three comparative
somatic variant callers [seurat (21), strelka (22), and mutect (23)]
using the CE samples as tumor and the peripheral blood as
normal was used to define the true somatic variants. Variants
called by only one of the three somatic variant callers were not
counted as true positives or true negatives in the evaluation. Since
lumosVar 2.0 could call variants that were only found in the NE
samples, but that was not the goal of the evaluation, we also ran
the three paired somatic variant callers using the NE samples as
the tumor and the blood as the normal, and excluded variants
detected in only the NE samples from the evaluation. In order to
evaluate the benefit of jointly calling high tumor and low tumor
content samples compared to our prior single sample tumor only
approach, we merged the bam files from the CE and NE samples,
and also called variants on these merged bams using lumosVar
2.0. We call the lumosVar 2.0 analysis of the merged CE and
NE bams the pooled approach. In order to compare our results
to what one would expect from using germline snp databases
to classify variants as somatic or germline, we used dbSNPv149

TABLE 1 | Patient characteristics.

Mean target coverage

Patient Id Cancer

type

Low tumor

sourcea
Low

tumor

High

tumor

Peripheral

blood

GBM-003 GBM NEB 183 387 177

GBM-005 GBM NEB 482 404 144

GBM-006 GBM NEB 441 248 115

GBM-008 GBM NEB 203 424 186

GBM-009 GBM NEB 199 387 153

GBM-014 GBM NEB 223 366 114

GBM-016 GBM NEB 416 376 261

BHH01 Breast ANWS 255 268 NA

BHH02 Breast ANMD 296 350 NA

BHH03 Breast ANMD 228 302 NA

BHH04 Breast ANMD 269 296 NA

BHH06 Breast ANMD 249 336 NA

BHH09 Breast ANMD 312 290 NA

BHH11 Breast ANMD 249 282 NA

BHH15 Breast ANWS 211 323 NA

BHH16 Breast ANWS 294 289 NA

BHH21 Breast ANMD 286 331 NA

BHH22 Breast ANWS 226 301 NA

BHH24 Breast ANWS 229 297 NA

BHH25 Breast ANWS 278 275 NA

BHH26 Breast ANMD 301 291 NA

BHH27 Breast ANWS 236 328 NA

BHH28 Breast ANWS 275 264 NA

BHH08 Breast ANWS 286 288 NA

BHH18 Breast ANWS 287 261 NA

BHH20 Breast ANWS 185 326 NA

BHH23 Breast ANWS 273 243 NA

HHP01 Prostate ANWS 202 216 NA

HHP02 Prostate ANWS 206 221 NA

HHP03 Prostate ANWS 261 184 NA

HHP04 Prostate ANWS 312 241 NA

HHP05 Prostate ANWS 247 232 NA

HHP06 Prostate ANWS 294 214 NA

HHP07 Prostate ANWS 265 254 NA

HHP08 Prostate ANWS 287 247 NA

HHP09 Prostate ANWS 302 228 NA

HHP10 Prostate ANWS 328 277 NA

HHP11 Prostate ANWS 329 274 NA

HHP12 Prostate ANWS 238 239 NA

HHP13 Prostate ANWS 299 285 NA

HHP14 Prostate ANWS 269 269 NA

HHP16 Prostate ANWS 363 330 NA

HHP17 Prostate ANWS 255 316 NA

HHP18 Prostate ANWS 224 258 NA

HHP19 Prostate ANWS 241 281 NA

HHP20 Prostate ANWS 208 307 NA

HHP21 Prostate ANWS 213 263 NA

aNEB, non-enhancing biopsy; ANWS, adjacent normal whole slide; ANMD, adjacent

normal macrodissected.
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(24), after excluding snps where the allele of origin was annotated
as somatic. We determined the number of likely germline false
positives based on the number of heterozygous variants called by
GATK HaplotypeCaller (25) that were not found in the somatic
excluded dbSNP set, and the number of somatic false negatives
based on the number of true somatic variants found in the
somatic excluded dbSNP set.

Application to Archival Sample Sets
De-identified FFPE tissue sections, clinical data, and pathology
data were acquired for 20 breast cancer patients and 20
prostate cancer patients from HonorHealth Scottsdale Shea
Medical Center, in accordance with local institutional review
boards and in compliance with the Health Insurance Portability
and Accountability Act (HIPAA) (Table 1). Prostate cancer
specimens were collected under IRB approved protocol with
45 CFR 46.111 (d) exemption; breast cancer specimens were
collected under IRB approved protocol including patient
informed consent per institutional policy and procedures.
Retrospective analysis was performed using archival samples
from treatment-naïve, invasive breast carcinomas or treatment-
naïve prostate adenocarcinomas.

Breast tumors were collected following routine clinical
lumpectomy or mastectomy, from women diagnosed with ER-
positive, invasive mammary carcinoma between 2010 and 2016
at HonorHealth Scottsdale. Median age of diagnosis was 65
years and ranged from 39 to 86 years. All tumors were
classified by pathology as estrogen receptor-positive. Nineteen
of the twenty tumors were classified as HER2-negative. The
breast tumor cohort spanned AJCC stages (IA-IV). Prostate
tumors were collected following radical prostatectomy for men
diagnosed with prostate adenocarcinoma between 2012 and 2016
at HonorHealth Scottsdale. Median age of diagnosis was 67 years,
ranging from 57 to 74 years. Eighteen of the twenty tumors
had a Gleason score of seven or greater. ER/PR/HER2 status
(breast tumors), Gleason score (prostate tumors), histological
type, tumor stage, treatment history, and clinical outcome,
including progression-free survival and overall survival, were
collected from medical records and the de-identified data was
provided for this study. Pathology review (JN) identified a tissue
block with high tumor content and a tissue block with a region
considered to have low tumor content for each patient. Five 10-
micron sections were provided for each sample (5 high tumor
content; 5 low tumor content). TheQiagenGeneRead FFPEDNA
Kit (cat# 180134) was used to isolate DNA from FFPE breast
and prostate cancer tumor specimens (N = 80) following the
manufacturer’s protocol.

Exome libraries were constructed from 200 ng of DNA (DIN
= 3–5) using KAPA Biosystems’ Hyper Prep Kit (cat#KK8504)
and the same bait set that was used in the evaluation
dataset, following the manufacturer’s protocols. The bait set
included Agilent’s SureSelectXT V5 baits plus custom content
including copy number probes distributed across the entire
genome, along with additional probes targeting tumor suppressor
genes and genes involved in common cancer translocations to
enable structural analysis. Libraries were equimolarly pooled,
quantitated, and sequenced by synthesis on the Illumina HiSeq
4000 for paired 82 bp reads.

Other Variant Calling Approaches
Two other variant calling approaches were applied to the archival
samples for comparison. The first approach, called unmatched
plus filtering (UPF) used the high tumor content samples as the
tumor and an unmatched normal (GM12878) as the normal in
the paired somatic variant callers (mutect, strelka, and seurat).
dbSNP and COSMIC were used to classify variants as somatic or
germline. Variants that were called by at least two of the three
paired somatic variant callers (or two out of two for indels, since
mutect does not call indels) and were not present in dbSNP
or were present in dbSNP and also present in COSMIC were
considered somatic calls in the UPF approach. In the second
approach, called adjacent normal as reference (ANR), the high
tumor content sample was used as the tumor sample and the
adjacent normal sample was used as the normal in the paired
somatic variant callers (mutect, strelka, and seurat). Variants
called by at least two out of the three paired somatic variant
callers were considered somatic calls in the ANR approach.

Variant Caller Overview
We previously created a single-sample strategy (lumosVar 1.0)
to call somatic variants in impure tumor samples based on the
differences in allelic frequency between the somatic and germline
variants (16). Here, we describe an extension of lumosVar 1.0
to jointly analyze multiple samples from the same patient. The
lumosVar 2.0 analysis has seven main steps (Figure 2). First,
a set of unmatched control samples is analyzed for position
quality scores and average read depth, as previously described
(16). Second, read counts and quality metrics are extracted from
the tumor bams. Third, quality scores are calculated for each
candidate variant position. Fourth, segmentation is performed to
define regions that have similar tumor/normal read depth ratios
and B-allele fractions. The fifth step involves finding the most
likely allele-specific copy number state for each segment. The
sixth step involves classifying each candidate variant position as
somatic, germline heterozygous, or homozygous. The final step
entails optimization of the model parameters. The caller iterates
between steps five, six, and seven until the solution converges.
Model input parameters and notation are shown in Tables 2, 3.

Quality Classification and Filtering
We used 16 quality metrics in a quadratic discriminant model
to determine the posterior probability that each position belongs
to a PASS group, as was previously used in lumosVar 1.0. The
same quality metrics and thresholds are used in lumosVar 2.0 as
were used in lumosVar 1.0 to assign candidate variant positions
to PASS and REJECT training groups (16). As previously, here
we also fit the model separately on candidate indel and point
mutation positions. Since the quality metrics for the B allele are
not relevant for homozygous positions, after the joint variant
calling is performed as described below, we repeat the quality
classification step fitting homozygous positions separately after
setting all the quality metrics to only use the “A” allele and setting
the difference metrics to zero. The model is fit independently
on each sample, and then we calculate a trust score by taking
the geometric mean of the posterior probability of belonging to
the PASS group weighted by the number of reads supporting the
variant across the samples. Candidate positions with a trust score
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FIGURE 2 | Overview of lumosVar 2.0 analysis. The flow-chart on the left show the main steps in the analysis. Steps 0.1 and 0.2 are data preparation, and steps 1–7

are performed by lumosVar 2.0. The graph on the right illustrates the main inputs and outputs of each step. The color of the arrows coming from each box indicates

the steps where that data is used as input, and the color of each box indicates the step where the data is generated.

greater than a threshold (Tpass) are considered for classification
as somatic or germline variants as described in the joint somatic
variant calling section below.

Segmentation
Prior to fitting the copy number model, segmentation is
performed. We use the circular binary segmentation algorithm
implemented in the Matlab Bioinformatics toolbox to segment
both the tumor to normal read depth log2 ratio of each exon
and the B-allele frequencies of common heterozygous variants.
Segmentation is performed independently on each sample. We
combine all of the segmentation boundaries from all of the
samples for both the read depth log2 ratio and B-allele frequency
segmentation, and then remove non-significant segments as
follows. A two-sample t-test is used to compare each pair of
adjacent segments for both the read depth log2 ratios and the B-
allele fractions for each sample. For each segmentation boundary,
the geometric mean is used to combine the p-values across the
samples and data types. The segmentation boundary with the
highest geometric mean p-value is removed, and the t-tests are
then performed on the newly merged segment with its neighbors.
This process is continued until of the segmentation boundaries
have geometric mean p-values less than the segmentation
significance threshold (α seg).

Expectation Maximization
We use an expectation maximization approach to fit the model
parameters and call variants. In the initial iteration, heuristics
are used to find reasonable values of the model parameters. In
the expectation step, the model parameters are used to identify
somatic and germline heterozygous variant positions. Identifying
these variant positions involves finding the copy number states of
each segment, joint variant type classification, and variant quality
filtering, all as described below. Using those variant positions,
values of the model parameters that maximize the likelihood of
the data are found.

Initial Parameter Values
The parameter f is a matrix with the number of rows
corresponding to the number of clonal variant groups (K) and
the number of columns corresponding the number of samples (J).
The initial value of f is set such that there is a main clonal variant
group that has a high sample fraction in all samples, there are J
clonal variant groups that are clonal in each sample and low in the
other samples, and there are another J clonal variant groups that
are sub-clonal in each sample and very low in the other samples.
The centering and spread parameters (C andW) are both vectors
of length J, and their initial values are determined as previously
described (16).
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TABLE 2 | Parameters and default values.

Parameter Default value or source Description

f π 0.1,0.7 Vector of length J of initial sample fractions. Default assumes two samples, with low

and high tumor content.

απ 1.5 Determines shape of prior distribution of 1f

π (N = 0) …π (N = 3), π (N ≥ 5) 0.01,0.25,0.3,0.2,0.15,0.09 Copy Number Priors

π (M = 0), π (M = 1), π (M ≥ 2) 0.25,0.5,0.25 Minor Allele Copy Number Priors

αseg 1E-5 Segmentation significance cutoff

ω COSMIC Number of cancer variants observed at the position

FA, FB 1,000 Genomes and Exac Population Allele Frequencies

ρSNV, ρ indel 1E-5, 1E-6 Constant for calculating prior somatic

Fp−SNV, Fp−indel 1E-5, 1E-6 Population allele frequencies assigned to alleles not seen in input population

Fmax−somatic 2E-5 Maximum population allele frequency to be considered a possible somatic variant

Qm
min

10 Minimum mapping quality to count read

Qb
min

5 Minimum base quality to count base

T PASS 0.8 Minimum posterior probability of belonging to the PASS group to be called pass

T Somatic 0.8 Minimum posterior probability of variant is somatic to be called somatic

T Germline 0.8 Minimum posterior probability of variant is germline to be called germline

ξ 3 Number of parameter fitting iterations without new global minimum before stopping

λ 5 Weight of penalty for adding clonal variant group

Copy Number State Assignments
The copy number state of each segment (g) may be described by
the total copy number (Ng), the minor allele copy number (Mg),
and the index of clonal variant group of the segment (kg). The
values of Ng, Mg, and kg are found that maximize a sum of log
likelihoods for the segment (SLLg).

{

Ng ,Mg , kg
}

= argmax
(

SLLg
)

This sum includes the likelihoods of the exon mean read
counts (Lxj), heterozygous variant read counts (Lyj), number
of common germline variant positions that would be called
germline heterozygous (LYdg) or somatic (LZdg), as well as the
prior probabilities of the copy number states (π (N), π (M)) and

sample fraction difference π
(

1fkg

)

.

SLLg =
∑J

j=1

(

1

Xg

∑Xg

x=1
log (π (Nx) Lxj)

+
1

Yg

∑Yg

y=1
log (π

(

1fkg

)

π (Mx)Lyj)

+
ηdg

ηd
log (LYdgLZdg)

)

The likelihood calculations are defined below.

Parameter Fitting Procedure
The values of f, W, and C are found that maximize the sum
of segment log likelihoods (SLLg) and somatic variant log-
likelihoods (Lz). Since the number of clonal variant groups (K)
changes the degrees of freedom of the model, as f is a J by K
matrix, we include a penalty term for increasing K.

{

f ,W,C
}

= argmax





G
∑

g=1

SLLg +
1

Z

Z
∑

z=1

log
(

π
(

1fk

)

Lz

)

(

π
(

1fk

)

Lz

)

−
JK

λ





In order to more efficiently search the parameter space, we
use the parameter values from the previous EM iteration (or
the initial values in the first iteration) as the starting point for
the parameter optimization. Since the heuristic used to find
the initial value of C may be incorrect, particularly for higher
ploidy genomes, other values of the centering parameter are
also tested, and the best one is used as a starting point for
optimization of all parameters. In order to find a reasonable
starting point for adding an additional clonal variant group, we
use the previous f matrix and test a set of random values for
the additional column. We use the best one as the starting point
for optimizing all of the parameters. If the maximum likelihood
score improves, the procedure is repeated with an additional
clonal variant group. This process continues until adding a clonal
variant group fails to improve the likelihood score. Since adding
a clonal variant group may make a previous clonal variant group
less important to the model, we also test removing each clonal
variant group, and then do another round of optimization of all
parameters. If this results in a newmaximum, then the procedure
will be repeated removing another clonal variant group. Once
removing clonal variant groups no longer improves the model,
the procedure returns to re-centering. The re-centering, adding
clonal variant groups, and removing clonal variant groups
is repeated until there are ξ consecutive iterations with no
new maximum found.

Likelihood Calculations
As in lumosVar 1.0, the likelihood of the exon mean read
depths are modeled as a Poisson distribution, and the somatic
and germline heterozygous read counts are modeled as beta
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TABLE 3 | Parameters and notation.

Variable Descriptions

INPUTS TO MODEL

RT, RB Total tumor read depth, B allele read depth

RC Mean read depth of unmatched normals

πS, πAB,

πAA

prior probability of somatic, germline heterozygous, germline

homozygous variant

Qm
A
, Qm

B
Mean mapping quality of reads supporting the A or B allele

Qb
B

Mean base quality of bases supporting B allele

X Total number of exons,

Y Number of heterozygous germline variants

Z Number of somatic variants

G Number of segments

K Number of clonal variant groups

J Number of samples from the patient

ηg Number of bases within the bed file in segment g

ηd Number of bases within the bed file with min (F A, F B)>

Fmax−somatic

PARAMETERS FIT IN MAXIMIZATION

fjk fraction of cells in the sample j with the variants in clone k

C centering parameter

W controls the spread of the allelic fraction distributions

INTERMEDIATE VARIABLES

N total copy number

M minor allele copy number

ϕS, ϕG expected allele fraction of somatic or germline variant

IS, Ij Index of clonal subset containing somatic variant or copy number

variant

A Allele of somatic variant (A = 1 for allele A = 2 for minor allele)

XCNA Number of copy number altered exons

OTHER NOTATION

GAA,

GAB

Germline homozygous or heterozygous genotype

O Other genotype beside somatic, germline homozygous AA, or

germline heterozygous AB

U Unknown genotype due to poor mapping

k Index of clonal subset {1, 2, ..., K}

g Index of segment {1, 2, …, G}

z Index of somatic variant {1, 2, …, Z}

y Index of heterozygous variant {1, 2, …, Y}

x Index of exon {1, 2, …, X}

binomial distributions.

Lxj
(

C, f |RTxj,RCx
)

= poissonpdf

(

round
(

RTxj
)

,

round

(

1

C

(

Nxf jkRCx + 2 (1− fjk

)

RCx

))

Lyj
(

C, f ,W|RByj,RTyj
)

= betabinomialpdf

(

RByj,RTyj,WφG
gjk,W

(

1− φG
gjk

))

Lzj
(

C, f ,W|RBzj,RTzj
)

= betabinomialpdf

(

RBzj,RTzj,WφS
gjk,W

(

1− φS
gjk

))

The expected germline heterozygous variant allele fraction is
determined as follows.

φG
jg =

fjkgMg +

(

1− fjkg

)

fjkgNg + 2
(

1− fjkg

)

lumosVar 2.0 considers three possible scenarios when finding the
expected somatic variant allele fraction: (1) variant is in the same
clonal variant group as the copy number alteration effecting the
segment and is on theminor allele (kzj ≡ kgj∧Az ≡ 1), (2) variant
is in the same clonal variant group as the copy number alteration
effecting the segment and is on the major allele (kzj ≡ kgj ∧Az ≡

2), or (3) variant is in a non-copy number altered clonal variant
group (kzj 6= kgj).

φS
z =















kzj ≡ kgj ∧ Az ≡ 1,
(

fjkMg

)

/
(

fjkNg + 2 ∗
(

1− fjk
))

kzj ≡ kgj ∧ Az ≡ 2,
(

fjk

(

Ng −M
g

))

/
(

fjkNg + 2 ∗
(

1− fjk
))

kzj 6= kgj,
(

fjkz
)

/
(

fjkgNg + 2 ∗
(

1− fjkg

))

The maximum likelihood is used to determine the clonal variant
group assignment and allele of each somatic variant.

{

kz ,Az

}

= argmax





J
∑

j=1

Lzj





The probability of detecting a heterozygous variant in each
segment is calculated based on the cumulative probability of
observing at least the minimum number of reads required to be
considered a candidate variant position (RB−min), given themean
read depth in the segment (RT) and the expected allele fraction of
a heterozygous variant in that segment (φG

jg).

Phet−jg = binomialcmf

(

RB−min,RTj,φ
G
jg

)

In order to determine if parameter values would result in
reasonable variant counts, the variant type classification is
performed at common germline variant positions. The likelihood
of detecting fewer than the observed number of heterozygous
variants in a segment (Ydg) is modeled as the cumulative
probability from a binomial distribution with Ydg successes,
the number of bases examined in the segment (ηdg), and Phet
probability of success.

LYdg (W, f |Yg) = binomialcmf

(

Ydg ,ηdg , Phet−jg

)

In order to penalize models that would result in germline
variants being called somatic, we then determine the likelihood of
finding that many or more somatic variants in germline variant
positions based on the cumulative probability from a binomial
distribution with Zdg somatic variants detected of ηdg database
variant positions tested, with a probability of success of ρSNV .

LZdg (C, W, f |Zdg) = binomialcmf

(

Zdg ,ηdg , ρSNV
)
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In lumosVar 1.0, we set a prior distribution on f in order to favor
models where the sample fractions are close to what is expected.
In lumosVar 2.0, we set a prior distribution on the difference in
f across the samples to favor models where the sample fractions
differ as much or more than the expected sample fractions. The
mean difference is found for prior tumor sample fractions (f π )
as follows:

1f π =
1
(

J
2

)

J−1
∑

i=1

J
∑

j=i+1

abs (f πi − f πj )+ ǫ

The mean difference of the sample fractions for each clone is
found similarly.

1fk =
1
(

J
2

)

J−1
∑

i=1

J
∑

j=i+1

abs (fik − fjk)+ ǫ

The prior probability that the sample fractions for each clone
have a mean difference as much as or greater than observed is
calculated from a beta distribution with a mode of the difference
in the prior tumor sample fractions.

π
(

1fk

)

= betacdf

(

1fk,α
π ,

απ − 1

1f π
− απ + 2

)

Joint Variant Type Classification
The probability of observing the read counts in each sample
(k) given that the variant is somatic (P (Dk|S)), germline
heterozygous (P (Dk|GAB)), germline homozygous (P (Dk|GAA)),
or another genotype (P (Dk|O)) are calculated as previously
described. The prior probabilities are also calculated as previously
described (16). The product of the conditional probabilities
across the set of samples gives the joint probability of each variant
type, given all the samples’ data, as we assume that the read counts
for each sample are independent. The posterior probability that
a position has a somatic variant given all the samples’ data is
calculated as shown below.

P (S|D) =

∏J
j=1 P

(

Dj

∣

∣S
)

πS
∏J

j=1 P
(

Dj

∣

∣GAA

)

πAA +
∏J

j=1 P
(

Dj

∣

∣GAB

)

πAB +
∏J

j=1 P
(

Dj

∣

∣S
)

πS +
∏J

j=1 P
(

Dj

∣

∣O
)

πO

Implementation and Availability

A custom pileup engine was written in C using htslib (https://
github.com/tgen/gvm). The pileup engine extracts the mean
exon read depths and calculates the quality scores form the
unmatched control bams, as well as extracts the read counts and
quality metrics from the tumor bams. The rest of the lumosVar
2.0 analysis was written in Matlab (https://github.com/tgen/
lumosVar2). A precompiled binary is provided which enables
users to run lumosVar 2.0 without a Matlab license.

RESULTS

Simulations: Comparison Between Pooled
and Joint Approaches
Simulations were performed to determine how the tumor purity
and copy number states affect the power to detect somatic
variants in the joint approach, and how the power compares
to the pooled approach. As previously shown, the pooled single
sample approach performs best with a sample of intermediate
tumor purity for variants in diploid regions, but copy number
variation leads to situations where the expected somatic and
germline allele fractions are very similar, making it difficult
to classify somatic variants using a single sample (16). From
the simulation results, we can see that the joint approach
mitigates this limitation, and only provides poor detection when
both samples fall into a range where the expected somatic
and germline allele fractions are very similar (Figure 3). The
joint approach generally only requires low-to-moderate coverage
when one sample has low tumor content and the other sample
has moderate-to-high tumor content.

Clonal Variant Groups
While the single sample version of lumosVar also assigned
somatic mutations and copy number alterations to clonal
variant groups, these clonal variant groups become much more
informative when looking at more than one patient sample. An
example patient’s results are shown in Figure 4. There are three
clonal variant groups found in this patient, one that appears
clonal in both samples (blue), one that appears sub-clonal in
the enhancing biopsy and not detected in the non-enhancing
biopsy (red), and one that appears clonal in the non-enhancing
biopsy and sub-clonal in the enhancing biopsy (green). From
these clonal variant groups, we can infer that the blue and red
variants are likely found in the same cells because their sample
fractions in the CE sample would add up to >100%. However, it
is not possible to definitively determine from these data whether
the blue and green variants are found in the same cells. The blue
variants may be “trunk” mutations found in all of the tumor
cells, which would imply that roughly 65% of the cells in the
NE sample, and 20% of the cells in the CE sample are normal
cells. It is also possible that blue and green variants are found
in different sets of tumor cells, implying that roughly 35% of
cells in the NE sample, and 5% of the cells in the CE sample

are normal cells, highlighting the difficulty of inferring clonality
and tumor evolution from a small number of tumor samples.
This patient also illustrates why the joint calling approach is
advantageous to detect somatic variants if the germline was not
available. With only the enhancing sample, the blue variants
would be difficult to differentiate from the germline variants. If
the non-enhancing sample were used as a reference in standard
paired somatic variant calling, only the red variants would likely
be detected.
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FIGURE 3 | Simulation results comparing pooled and joint approaches. Top row of graphs shows the expected allele frequency of somatic (red) and germline variants

(black) by tumor content (x-axis) for different copy number states. The middle two rows of graphs are based on simulation results using a mean coverage of 200X per

sample (400X pooled). They show the false negative rate (FNR—simulated somatic variants not called somatic) and false positive rate (FPR—simulated germline

heterozygous variants falsely called somatic) plotted by mean tumor content for the pooled (black triangles) and joint (colored circles) approaches. For the joint

approach, the color of the circles represents the difference in tumor content between the two samples analyzed jointly. The bottom set of graphs shows the coverage

required to detect at least 80% of the simulated somatic variants using two samples of different tumor content (shown on the x and y axis) using a joint approach

(lower triangle of each heatmap) or using a single-sample approach on a merged sample with a tumor content that is the average of the two samples and coverage

that is the sum of the two samples (upper triangle of heatmap). The color indicates the mean target coverage in the pooled approach, or the sum of the mean target

coverage in the two-sample joint approach. Black squares indicate that <80% of the somatic variants were detected at the highest coverage simulated (6400X).

Evaluation: Real Patients
To evaluate lumosVar 2.0 on real data, recurrent glioblastoma
patients that had whole exome sequencing data available for two
samples of different tumor contents (from contrast enhancing
and non-enhancing biopsies), as well as germline sequencing data
(from peripheral blood), were identified (Table 1). Three variant
calling approaches were compared: (1) A filtering approach,
where heterozygous germline variants not found in dbSNP were
considered false positives, and somatic variants found in dbSNP
were considered false negatives, (2) a pooled approach where
the data for the high tumor content and low tumor content
samples are combined in-silico, and (3) joint analysis of the paired
high tumor content and low tumor content samples. Both the
pooled and joint approaches use the lumosVar 2.0 software for

variant calling. We find that the filtering approach consistently
has better sensitivity, but much lower precision, and lower F1
scores (harmonic mean of sensitivity and precision) than both
the pooled and joint analyses (Table 4). This is consistent with
our previous findings that private germline variants result in a
high number of false positives using a filtering approach (16). In
most of the samples, we find modest improvements in sensitivity,
precision, and F1 scores in the joint approach compared to
the pooled. From the simulations, we would have expected
to see similar precision and more consistent improvements in
sensitivity. In order to more carefully evaluate where the joint
approach and pooled approach are performing differently in
detecting variants, we examined the sample fractions of variants
that are true positives, false positives, and false negatives in
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FIGURE 4 | Example lumosVar 2.0 output. (A) Log2 fold change of the mean exon read depths compared to the unmatched controls. (B) The estimated integer copy

number states are plotted for each genomic segment by chromosome position. (C) The variant allele fractions are plotted by chromosome position. The gray and

(Continued)
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FIGURE 4 | brown dots represent variants called as germline heterozygous by lumosVar 2.0 and the large colored dots represent variants called somatic by lumosVar

2.0. (D) Summary of the clonal variant group patterns. The thickness of the lines represents the proportion of copy number events assigned to each group and the

size of each circle is proportional to the number mutations assigned to each group. (E) Sample fraction (estimated proportion of cells in the sample containing the

variant) distribution of somatic mutations. (F) Number of exons determined to be in each copy number state, excluding diploid. (G) Number of somatic mutations

detected in both samples (left bar), enhancing only (middle bar), and non-enhancing only (right bar). On all plots, the colors indicate the clonal variant group.

TABLE 4 | Evaluation results.

TPR PPV F1

Patient True somatic Filt Pool Joint Filt Pool Joint Filt Pool Joint

GBM-003 256 0.95 0.65 0.61 0.34 0.81 0.91 0.50 0.72 0.73

GBM-005 179 1.00 0.66 0.87 0.22 0.80 0.94 0.36 0.72 0.90

GBM-006 150 0.85 0.45 0.61 0.16 0.70 0.83 0.27 0.54 0.70

GBM-008 212 1.00 0.76 0.83 0.31 0.83 0.96 0.47 0.80 0.89

GBM-009 179 0.99 0.77 0.81 0.25 0.72 0.95 0.40 0.74 0.88

GBM-014 285 0.90 0.52 0.44 0.36 0.77 0.73 0.52 0.62 0.55

GBM-016 301 0.85 0.70 0.77 0.30 0.84 0.91 0.44 0.77 0.84

The number of true somatic variants found in each patient, as well as the sensitivity (TPR), precision (PPV), and F1 score are shown for the filtering (Filt), single sample (Pool), and

lumosVar 2.0 (Joint) approaches.

each approach (Figure 5). We find that the pooled approach
has more false positive variants that have similar allelic fractions
in the CE and NE biopsies. We hypothesize that these variants
have unexpected allelic fractions due to mapping noise or copy
number call errors that would not be modeled in the simulations.
The joint approach is better at avoiding these calls, as the
allelic fractions do not fit the patterns of the clonal variant
groups found in the patient. However, the joint approach also
misses some true somatic variants that do not fit the patterns
of clonal variant groups found in the patient, such as a set
of lower sample fraction variants in GBM-003. GBM-014 is
the only patient where the pooled approach outperforms the
joint approach. This patient also appears to have the smallest
difference in tumor content between the two biopsies as well as
the most complex copy number profile of this set of patients
(Supplemental Figure 1), both factors that likely contribute to
the poor performance.

Application to Archival Samples
We applied our methods to archival breast cancer and
prostate samples, where only FFPE tissue sections from
biopsies or surgical tumor resections were available. For eight
of the breast cancer patients, whole slides with adjacent
histologically normal tissue were not available or did not have
sufficient DNA yield, so adjacent normal areas were macro-
dissected from tumor-containing slides. For the remaining
patients, DNA was isolated from whole slides from additional
FFPE blocks containing adjacent histologically normal tissue
(Table 1). For two breast cancer cases (BHH02, BHH27), the
additional “low tumor” blocks were from the contralateral breast
following double mastectomy, though BHH02 was one of the
eight patients that required macro-dissections of the tumor-
containing slide to get sufficient DNA for the adjacent normal
sequencing. Where macro-dissection was used to obtain the
normal tissue samples, most of the somatic variants called

were detected in the adjacent normal sample (median of
98%). For the patients where adjacent histologically normal
tissue was obtained from separate slides, most patients still
had some somatic variants detected in the normal tissue
(median 35%–Figure 6).

We also analyzed the archival tissue using two additional
approaches: (1) a filtering strategy where standard somatic
variant calling tools were used against an unmatched reference
(GM12878), and variants found in dbSNP were excluded as likely
germline, referred to as the unmatched plus filtering approach
(UPF), and (2) a strategy that used the tumor adjacent normal
sample as the normal reference in standard somatic variant
calling tools, referred to as the adjacent normal as reference
approach (ANR). In both cases the same three paired somatic
variant calling tools (mutect, seurat, and strelka) were used
and variants were considered positive if they were called by at
least two callers. While the adjacent normal tissue was selected
based on histology, we do not expect it to be free of molecular
alterations due to potential contamination, field cancerization,
or tissue specific mutational processes. We include the ANR
strategy for comparison, as it is a commonly used strategy when
other constitutional tissue is not available (9). Using the UPF
strategy, we found that most of the variants called using the
filtering strategy have variant allele fractions around 50% in both
the low- and high-tumor-content samples, suggesting that most
are private germline variants. Using the ANR approach, we only
identified variants with allele fractions in the adjacent normal
sample that were at or very close to zero. The variants called by
lumosVar 2.0 generally have higher allele fractions in the tumor
samples and low allele fractions in the adjacent normal samples,
as expected (Figure 7).

In order to compare the ability of the three approaches
to detect likely drivers, mutations called by any of the
three approaches were compared against the Cancer Hotspots
database, which reports recurrent mutations in 11,119 tumor
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FIGURE 5 | Comparison of variants called in pooled vs. joint approach. The first column of graphs shows the estimated sample fractions of true somatic variants that

were detected by both the pooled and joint approaches. The variants are colored by clonal variant groups. The other three columns show the sample fractions of

variants that were called incorrectly only in the pooled approach (column 2), only in the joint approach (column 3), or incorrectly in both approaches (column 4). False

positives variants are shown in magenta and false negatives in cyan.
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FIGURE 6 | Clonal patterns and variant counts detected by lumosVar 2.0 in the archival dataset. The top half of each plot shows the summary of the clonal variant

group patterns for each patient. Each line represents a clonal variant group and the thickness of the lines represents the proportion of copy number events assigned

(Continued)
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FIGURE 6 | to each group and the size of each circle is proportional to the number mutations assigned to each group. The bottom half of each plot shows the

number of somatic variants detected in the adjacent normal (AN) and tumor (T) samples, with the colors corresponding the clonal variant groups. The 8 patients in the

top row had the adjacent normal tissue macrodissected from tumor containing slides and these patients typically have similar number of variants detected in the

tumor and adjacent normal.

TABLE 5 | Hotspot mutation detection.

Patient Gene AA change AD AN (AF)a AD TM (AF)b LVJ ANR CHLc Cosmic count

BHH01 PIK3CA H1047R 473,9 (0.02) 378,201 (0.35) Yes LQCd 3 1,806

HHP13 PIK3CA E545K 332,0 (0) 195,11 (0.05) No Yes 3 332

BHH06 AKT1 E17K 121,23 (0.16) 151,62 (0.29) Yes No 3 295

BHH24 AKT1 E17K 123,1 (0.01) 118,60 (0.34) Yes Yes 3 295

BHH28 PIK3CA H1047L 417,0 (0) 348,81 (0.19) Yes Yes 3 262

HHP19 TP53 G245S 186,1 (0.01) 61,76 (0.55) Yes Yes 3 81

BHH18 PIK3CA Q546E 201,16 (0.07) 164,38 (0.19) Yes No 3 3

BHH18 PIK3CA G106R 127,8 (0.06) 96,19 (0.17) Yes No 3 2

BHH25 PIK3CA E726K 269,0 (0) 268,17 (0.06) No Yes 2 31

BHH25 SF3B1 K666E 210,0 (0) 122,46 (0.27) Yes Yes 2 19

aAllelic depth of reads supporting the reference, alternate alleles in the adjacent normal sample.
bTumor sample.
cCancer hotspots database validation level (Cancer Hotspots).
dCalled by one of three paired somatic variant callers (strelka).

samples (Cancer Hotspots1). A total of 28 hotspot mutations
were called including eight mutations with in vitro or in
vivo validation (level-3), two mutations detected in the Cancer
Hotspots dataset that were previously reported (level-2), and
eighteen mutations that were novel in the Cancer Hotspots
dataset (level-1). Of the ten level-3 and level-2 mutations, all
were called in the UPF approach, lumosVar 2.0 joint analysis
called eight, and only six were called in the ANR approach
(Table 5). The two level-2 and level-3 mutations missed by
lumosVar 2.0 had low allele fractions in the tumor sample (5–
6%) and were not detected in the adjacent tissue, while the
four level-3 hotspots variants missed by the ANR approach
had moderate allele fraction in the tumor (17–35%) and low
allele fractions in the adjacent tissue (2–16%). Seventeen of
the eighteen level-1 hotspots were called only in the UPF
approach, and these tended to have similar allele fractions in
the tumor and adjacent normal samples. These include the
same APOBR mutation called in 13 patients, and the same
DHRS4mutation called in four patients (Supplemental Table 1).
Putative mutations that are common within a dataset, but not
known to be common in cancer, are suggestive of alignment
artifacts (26). Both the UPF approach and lumosVar 2.0 detected
the eighteenth level-1 hotspot which was a CDH3 truncating
mutations with high allele fractions in the tumor and low in the
adjacent normal.

DISCUSSION

Detecting somatic mutations when a normal tissue sample is
not available remains a challenging problem. We present a

1Available at: http://cancerhotspots.org/#/home [Accessed December 15, 2017]

method that leverages tumor-adjacent normal tissue, and is
robust to significant levels of tumor contamination. Simulation
studies suggest that a multi-sample approach should be more
powerful than a single-sample approach, even if there is a small
difference in tumor content between the two samples. Evaluation
of a set of GBM samples with low tumor content (from NE
biopsies) and high tumor content (from CE resections) further
demonstrates the sensitivity and precision of the joint approach.
Practical application of this approach to a set of FFPE breast
and prostate samples shows the feasibility of this approach with
typical archival samples.

While the approach described here represents an
improvement over other tumor only somatic variant calling
approaches, we believe it is best to sequence a true constitutional
sample when feasible as the sensitivity of our approach is
still limited compared to standard paired somatic variant
calling. However, there are many open questions in precision
oncology that can only be answered by collecting large amounts
of patient genomic data linked to treatment response and
clinical outcomes. For example, many factors may contribute
to patient response to a targeted therapy, including the
presence of other aberrations affecting the same pathway,
aberrations affecting alternative pathways, and sub-clonal
resistance mutations. Banks of archival samples show great
potential to accelerate research predicting treatment response,
as medium- and long-term outcomes may already be known.
The approach outlined here should enable researchers to
use archival samples more effectively, as accurately calling
somatic variants is the first step in any analysis to answer such
critical questions.

A complex relationship exists between tumor heterogeneity
and clinical outcome, with moderately heterogeneous tumors
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FIGURE 7 | Comparison of allelic fractions of variants in archival dataset by calling method. For each of the breast and prostate patients, the allele fractions in the

tumor sample are plotted for the variants detected in each of the three approaches. The color of each point indicates the allele fraction of the variant in the adjacent

(Continued)
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FIGURE 7 | normal sample. Most of the variants detected in the adjacent normal as reference approach, but not lumosVar 2.0 joint analysis (ANR NOT LVJ), have low

allele fractions in both the tumor and the adjacent normal. The variants detected by lumosVar 2.0 joint analysis, but not adjacent normal as reference approach (LVJ

NOT ANR) typically have higher allele fractions in the tumor, and lower allele fractions in the adjacent normal, though lumosVar 2.0 joint analysis also detects some

variants that are lower allele fraction in the tumor and higher allele fraction in the adjacent normal in a few patients such as HPP01. The variants only called in the

unmatched filtering (UPF only) approach have similar allele fractions in the tumor and adjacent normal samples. The 8 patients in the top row had the adjacent normal

tissue macrodissected from tumor containing slides and these patients typically have more variants detected by lumosVar 2.0 joint analysis and not ANR compared to

the remaining patients whose adjacent normal sample was procured from separate slides.

having worse outcomes than both more homogenous tumors
and more heterogeneous tumors (27, 28). Measuring the
overall level of heterogeneity, in addition to detecting the
clonal prevalence of individual variants, can provide insight
into susceptibility and resistance to targeted therapies (29).
lumosVar 2.0’s ability to jointly analyze multiple samples
from the same patient and integrate copy number and
mutation data should be useful even when a matched normal
sample is available to track mutations across longitudinal
sample collections and spatially diverse samples, to gain
insight into the tumor’s evolution. Future work will further
evaluate and benchmark lumosVar 2.0’s clonal variant
group analysis.

Compared to the single sample lumosVar 1.0 analysis, the joint
approach requires lower total sequencing coverage to obtain the
same sensitivity. Based on the simulation studies, we find that if
the adjacent normal tissue has <25% tumor cell contamination,
and the tumor sample has at least 55% percent tumor cells, then
only 200X total coverage (100X for each sample) is required to
detect 80% of the somatic variants that are in all of the tumor
cells. However, higher coverage would be desirable in order
to detect low abundance sub-clonal variants. We have shown
that lumosVar 2.0 works best with a high tumor content and
low tumor content sample from the same patient. These may
not always be available such as with fine needle biopsies, or
with brain tumors or metastases where resection of adjacent
normal tissue would be avoided. However, we believe that the
breast and prostate tumor blocks used in this study represent
fairly typically archival samples, demonstrating the utility of
the approach. Due to the large difference in prior probabilities
of homozygous reference vs. somatic variants in this model,
lumosVar 2.0 tends to be less sensitive to low abundance variants
compared to other somatic variant callers. lumosVar 2.0 also
has more stringent quality filtering than most paired somatic
variant callers because the same artifacts often appear in the
tumor and germline sample, so paired callers can use the presence
in the germline to eliminate those artifacts. The probability that
a variant is somatic or germline is calculated assuming that
the allele specific copy number of the position is known with
certainty, while there is clearly uncertainty in both setting the
segmentation boundaries assigning both the copy number state
of a given segment. Inspection of incorrectly classified variants
suggests that segmentation boundary placement is a major source
of error. We believe that a more sophisticated segmentation
algorithm that is able to capture the uncertainty of segmentation
boundary placement would yield the largest improvements in
performance. We also recognize that an underlying assumption

of our copy number model, that at most one copy number
altered state may occur in a given segment across the patient
samples, is an oversimplification, and a more realistic copy
number model may improve both the copy number and variant
calling results.

Though it may seem surprising that somatic variants
were detected in histologically normal tumor adjacent tissue,
previous studies have identified DNA, epigenetic, and gene
expression alterations in tumor adjacent tissue (30). The
theory of field cancerization proposes that epigenetic changes
in the adjacent tissue creates a permissive environment
for malignant transformation and sometimes can lead to
multifocal disease and/or clonally independent recurrence. The
sequencing of DNA from tumor adjacent tissue could serve
a dual purpose in helping to identify somatic mutations
when another source of normal tissue is not available, as
well as helping to better understand the phenomenon of
field cancerization.
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