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Abstract

Pulmonary arterial hypertension (PAH) is characterized by increased
pulmonary artery pressure and vascular resistance, typically leading
to right heart failure and death. Current therapies improve quality of
life of the patients but have a modest effect on long-term survival.
A detailed transcriptomics and systems biology view of the PAH lung
is expected to provide new testable hypotheses for exploring novel
treatments. We completed transcriptomics analysis of PAH and
control lung tissue to develop disease-specific and clinical data/tissue
pathology gene expression classifiers from expression datasets.
Gene expression data were integrated into pathway analyses. Gene
expression microarray data were collected from 58 PAH and 25
control lung tissues. The strengthof thedataset and its deriveddisease
classifier was validated using multiple approaches. Pathways and
upstream regulators analyses was completedwith standard and novel

graphical approaches. The PAH lung dataset identified expression
patterns specific to PAH subtypes, clinical parameters, and lung
pathology variables. Pathway analyses indicate the important global
role of TNF and transforming growth factor signaling pathways. In
addition, novel upstream regulators and insight into the cellular and
innate immune responses driving PAH were identified. Finally,
WNT-signaling pathways may be a major determinant underlying
the observed sex differences in PAH. This study provides a
transcriptional framework for the PAH-diseased lung, supported by
previously reported findings, and will be a valuable resource to the
PAHresearch community.Our investigation revealednovel potential
targets and pathways amenable to further study in a variety of
experimental systems.
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Pulmonary arterial hypertension (PAH) is
characterized by mean pulmonary artery
pressure (mPAP) of 25 mm Hg or greater,

though the majority of patients are referred
for a formal clinical work-up after finding
elevated right ventricular systolic pressure
by echocardiogram studies (see Reference 1
for a recent review). PAH is a rare
pulmonary disease, with an incidence of
2–10 cases/million in the United States and
Europe, and is clinically subdivided into 5
groups. Within group 1 PAH are idiopathic
PAH (IPAH), associated PAH (APAH),
and heritable PAH (HPAH). APAH can
be further subdivided into associated
phenotypes, such as connective tissue
disease, congenital heart defects, and
anorexigen/stimulant drug use. HPAH
most frequently involves bone
morphogenetic protein (BMP) receptor
(BMPR) 2 mutations/deletions, though
other transforming growth factor-b
(TGFB)/BMP superfamily member
mutations have been described (2).
Recently, a whole-genome sequencing
project of 1,038 patients with PAH/6,385
control subjects was completed, notably
adding SRY-box 17 (SOX17) and growth
differentiation factor 2 as potential drivers

Table 1. Demographics of Pulmonary
Hypertension Breakthrough Initiative
Genomics Samples

FD PAH P Value

Samples, n 25 58 —
Age range, yr 1–64 7–79 NS
Sex
Male 18 15 0.0001
Female 7 43 —

Race
White 21 40 NS
Black 4 6 —
Hispanic 0 7 —
Asian 0 5 —

PAH subtypes
IPAH 31 —
APAH 18 —
HPAH 5 —
Other 4 —

Definition of abbreviations: APAH =
associated pulmonary arterial hypertension;
FD = failed donor; HPAH= hereditary pulmonary
arterial hypertension; IPAH = idiopathic
pulmonary arterial hypertension; NS = not
significant; PAH = pulmonary arterial
hypertension.

all PAH vs. FD

–4.00 0.00 4.00

all PAH FD

Figure 1. Supervised hierarchical clustering of PHBI (Pulmonary Hypertension Breakthrough Initiative) classifier discovery genelist. The PHBI classifier is
visualized by supervised hierarchical clustering of the PHBI dataset showing 99% correct identification of the pulmonary arterial hypertension (PAH) and
failed donor (FD) samples into separate branches of the dendrogram. One PAH (idiopathic PAH subgroup) sample was misclassified as FD. Figures E1
and E2 show the batch and sex correction process, as well as independent validation of the PHBI classifier on independent lung PAH transcriptome
datasets and literature-derived PAH-specific gene pathways.

Clinical Relevance

Our lung transcriptome study data
in pulmonary arterial hypertension
(PAH) were analyzed in a variety of
ways, relating transcriptional changes
with pulmonary pathological
observations, current targeted
therapies, and the potential role of
inflammation and novel pathways and
regulators in this disease. We found
strong evidence for the estrogen
receptor pathway, inflammation
modulators, innate immunity, and
WNT pathway processes in the PAH
transcriptome. Our work represents
the largest PAH lung transcriptome
study to date and provides insights into
current therapies and generates new
hypotheses for preclinical testing.
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of PAH (3). With current clinical management,
diagnostics, and therapeutics, patient 5-year
survival has improved to 50–60% (1, 4, 5).
Women are two to three times more likely to
be diagnosed with PAH, though, interestingly,
they exhibit longer survival (6, 7). Group 1
PAH is characterized by an endothelial cell
hyperproliferative phenotype in the lung
vasculature creating obstructions, vascular
lesions (identified as plexiform lesions),
and vasoconstriction (8, 9). The physical
blocking of normal pulmonary blood flow
results in increased pulmonary vascular
resistance and right ventricular maladaptation,
ultimately leading to right heart failure as
the most common cause of death. Current
treatment options typically focus on
symptomatic relief rather than disease
progression intervention (10).

Diseases such as PAH are driven by a
complicated network of molecular processes
(11–14). Data supporting this notion are
accumulating from large-scale “-omics”
profiling in numerous disease conditions
(15–17). Methods are currently emerging to
employ molecular profiling to understand
more expansive systems-level pathways in
human disease contexts. However, for PAH,
advances have been slowed by anatomic
inaccessibility of diseased pulmonary tissue
and consequent inability to develop relevant
computational tools for these transcriptomic
datasets. Our work uses established and novel
computational analyses of gene expression
applied to a large number of PAH lung tissue
specimens in comparison to controls. These
results provide validation of current
therapeutic approaches as well as predictions
of both the connections and rewiring of
pathways with potential new insights in
to pathogenesis and treatment.

Methods

Lung tissues preserved in RNALater
(Ambion) were provided by the Pulmonary
Hypertension Breakthrough Initiative
(PHBI; https://www.ipahresearch.org/
services.html). The PHBI is a multicenter
network of lung transplant centers, the goal
of which is the accrual of clinical data and
lung biospecimens from patients with PAH
at transplant and control subjects (failed
donors [FD]). FD control lung samples
were obtained from patients not found to
have an appropriate recipient, but still
meeting physiologic standards. The tissue
procurement protocol was previously
described (see Reference 18 and the data

supplement), and application for
lung tissue, primary cell lines, and
genomics datasets can be made at
http://phbi.org/index.do. A summary of the

patient demographics is shown in Table 1
and a detailed table in the data supplement
(Table E1). Total RNA was prepared and
analyzed using standard methods (see the

Table 2. Differentially Regulated Drug Targets in PAH

Fold Change
(PAH/FD)

Adjusted
P Value

Endothelin pathway
Endothelin 1 (EDN1) 2.60 6.74E205
Endothelin receptor type A (EDNRA) 1.66 2.64E204

Phosphodiesterase family
Phosphodiesterase 5A (PDE5A) 1.48 1.30E203
Guanylate cyclase 1 b subunit 1 (GUCY1B1) 0.84 3.70E202

Prostanoid pathway proteins
Prostaglandin I2 (prostacyclin) receptor (PTGIR) 1.21 9.34E202
Prostaglandin I2 (prostacyclin) synthase (PTGIS) 1.26 8.23E202

Voltage-gated calcium channels (vasoreactive-PAH)
Calcium voltage-gated channel subunit A1C
(CACNA1C)

1.22 3.60E202

Table 3. Top Ranked Pathways and Upstream Regulators from Ingenuity Pathways
Analysis

P Value z-Score

Ingenuity canonical pathways
Phagosome formation 7.41E207 —
G protein–coupled receptor
signaling

1.17E206 —

IL-8 signaling 4.57E206 21.04
Role of pattern recognition
receptors in recognition of
bacteria and viruses

6.76E206 20.53

Complement system 2.04E205 1.34
Osteoarthritis pathway 4.68E205 20.23
cAMP-mediated signaling 4.90E205 20.63
tRNA splicing 5.01E205 —
Hepatic fibrosis/hepatic stellate
cell activation

6.03E205 —

Upstream regulator P value of
overlap

Activation
z-score

Predicted
activation state

TNF 1.24E214 20.97 —
CSF3 3.85E212 22.42 Inhibited
b-estradiol 1.29E211 20.85 —
LPS 4.00E211 21.41 —
Ig 1.47E210 3.64 Activated
IL-13 2.19E210 1.37 —
TGFB1 7.02E210 0.93 —
TCL1A 1.35E209 22.00 Inhibited
Tretinoin 2.71E209 21.72 —
Dexamethasone 1.21E208 21.39 —
TGM2 1.98E208 24.03 Inhibited
ESR1 2.70E208 1.51 —
GNA12 3.06E208 1.14 —
IL-10RA 3.82E208 2.47 Activated
OSM 7.60E208 1.62 —
IL-10 8.48E208 22.39 Inhibited

Definition of abbreviations: CSF= colony-stimulating factor; ESR= estrogen receptor; GNA=G protein
subunit a; IL-10RA= IL-10 receptor A; OSM=oncostatin M; TCL= T cell leukemia/lymphoma; TGF=
transforming growth factor; TGM= transglutaminase.
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data supplement), and the microarray CEL
files and associated data are available at
NCBI GEO as GSE117261.

Microarray CEL files were imported into
a Partek Genomics Suite 6.6 and analyzed
as described in detail in the data supplement.
Briefly, the 83 microarrays were imported
to visualize batch effects. As the microarrays
were collected over a 4-year period in three
separate batches, “batch” became the biggest
confounding variable (see Figure E1A in
the data supplement). In addition, PAH
disease has a female bias (3:1 female:male,
as seen in our samples), whereas the FDs
show a male bias (1:2; overall distribution
x2, 0.0001). Thus, batches 1–3 were used,
after correcting for batch and sex (Partek’s
“batch remove” function, Figure E1B). The
microarray cohort included 58 subjects with
PAH (group 1 clinical subtypes) and 25 FD
patients. Differential gene expression analysis
(Partek ANOVA model after batch/sex
correction) generated 1,140 transcript IDs
(using false discovery rate [FDR] q value,
0.001 [19]; Figure E2 and Table E2).

Pathway analysis of the gene list was
performed in three ways. First, the online
freeware tool, Enrichr (http://
amp.pharm.mssm.edu/Enrichr/ [20])
interrogated standard Gene Ontology (GO)
and KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway enrichment analyses.
Ingenuity pathway analysis (IPA; application
build 463341M, March 9, 2018) helped to
visualize pathway overrepresentation, as well
as to identify potential upstream regulators
along with predicting changed activity in their
pathways. In addition, considering complex
molecular mechanisms underlying diseases,
such as cancer and PAH, a novel, network-
based computational statistical approach,
Evaluation of Differential DependencY
(EDDY; see additional details in the data
supplement), was used. EDDY combines
pathway-guided and differential dependency
analyses with a probabilistic framework (21, 22)
to identify rewired pathways in PAH.

Additional methods information and
details are available in the data supplement.

Results

Characterization of the Microarray
Dataset
Patient demographics (Table 1) did not
show a significant difference in range of
ages or ethnicity among the PHBI cohort.
The FD control subjects were provided with

minimum clinical data (age, sex, and
race/ethnicity) and no previous medical
history information. As seen with end-stage
PAH disease, the vast majority of patients
were receiving triple therapy. A total of
76% of patients were on triple therapy
(phosphodiesterase [PDE] 5A inhibitor,
ERA [endothelin receptor antagonist], and
prostanoid) with another 17% on a double
therapy that included a prostanoid. As
outlined in the data supplement, the
microarray dataset had large batch and sex
effects, which were corrected by Partek’s
“batch-remove” feature. After batch/sex
correction, the complete microarray dataset
(n = 33,297 transcript IDs) was analyzed by
ANOVA modeling (Partek) for
differentially expressed (DE) genes between
PAH and FD, followed by q value FDR
correction. There were 1,140 transcript IDs
meeting an FDR q value less than 0.001 cut-
off (termed PAH classifier, Table E2), and is
displayed as a supervised expression
heatmap and volcano plot (Figure 1 and
Figure E2). We tested the PAH classifier on

an independent control versus PAH lung
expression dataset (23) and by using a
literature-derived PAH gene network (see
Reference 14 and Figures E3 and E4). In
addition, we also validated specific gene
expression differences predicted from
the microarray analysis by qRT-PCR
(Figure E5).

Current PAH treatments generally
target vasoconstriction by three different
modalities: nitric oxide→soluble guanylate
cyclase→cGMP levels, and the endothelin
(EDN) and prostacyclin pathways (1, 8, 24).
For the small subset of patients with PAH
that exhibit vasoreactivity (13, 25), voltage-
gated calcium channel blockers can be
effective. Evidence within the PAH lung
transcriptome support the importance of
these three therapeutic options. PDE5A and
other PDE family members were found to
be significantly upregulated (Table 2 and
Figure E5). An alternative treatment
strategy targets soluble guanylate cyclase
with stimulators (e.g., riociguat), with a
subunit of soluble guanylate cyclase
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Figure 2. Estrogen receptor (ESR) 1 is a predicted upstream regulator in the PAH transcriptome.
ESR1 was identified from the PHBI classifier using Ingenuity Pathways Analysis (IPA) upstream
regulator algorithm (enrichment P = 2.70E208). Upregulated (red) or downregulated (green) genes
from the PHBI classifier are indicated in the network surrounding ESR1. ESR1 itself was slightly
upregulated in PAH compared with FD (31.12; q value = 6.16E205).
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(guanylate cyclase 1 soluble subunit Beta 1
[GUCY1B1]) being downregulated (Table 2).
EDN pathway antagonists (e.g., bosentan) are
another established treatment for PAH.
EDN1 and EDN receptor A were both
upregulated (Table 2). Finally, the L-type
voltage-gated calcium channel, CACNA1C,
the target for dihydropyridine-class drugs,
amlodipine and nifedipine, used in patients
with PAH that exhibit vasoreactivity, was
significantly upregulated (Table 2).
Additional listing of these gene families, along
with BMPs/BMPR1A, S100 calcium binding
proteins (S100 s), and Toll-like receptors
(TLRs) are shown in Table E3.

Geneset Enrichment Analysis of the
PAH Classifier
The PAH classifier was imported into IPA for
pathway analysis (Table 3 and Table E4). The
top four canonical pathways described by the
PAH classifier included G protein–coupled
receptors (Fisher exact P = 13 1026) and
three immunological responses, IL-8
signaling (P = 4.63 1025) and two innate
pathways (phagosome formation and role of
pattern recognition receptors; P = 8.53 1027

and 6.83 1026). Using its extensive database
of published data as well as natural language
processing and curated text mining of the
published literature, IPA can place an
identified gene list into the context of
potential upstream regulators. The predicted
upstream regulators may themselves be DE,
though this is not a criterion for inclusion.
Estrogen receptor 1 (ESR1) was one specific
example of a predicted upstream regulator
that itself was found to be upregulated in
PAH (Figure 2) and is thought to play a
major role in PAH, vis a vis the female bias
in PAH incidence as well as the better
survival of females (26, 27). The female
hormone, b-estradiol, was identified as a
potential upstream regulator suggesting a
potentially pleiotropic role.

Most consistently, the PAH classifier
upstream regulators were found to
correspond to immunological roles,
including known genes (see Reference 28;
TNF, high-resolution Figure E6), colony-
stimulating factor (CSF) 3, and IL-10
receptor A (IL-10RA; Figures 3A and 3B),
as well as small molecules (b-estradiol, LPS,
and dexamethasone). Statistical analysis
identified TNF having the lowest P value
(1.23 10214), whereas CSF3, IL-10RA, and
IL-10 displayed small P values (3.83 10212,
3.83 1028, and 8.53 1028, respectively),
and were scored as inhibited (CSF3
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Figure 3. IL-10 receptor A (IL-10RA) and colony-stimulating factor (CSF) 3 are predicted upstream
regulators driving pathway activation or inhibition. IL-10RA was predicted as an upstream regulator
driving an activated pathway (A; enrichment P = 3.82E208; activation z-score =12.47), whereas
CSF3 was predicted as an upstream regulator of an inhibited pathway (B; enrichment P = 3.85E212;
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z-score =22.4; IL-10 z-score =22.4) or
activated (IL-10RA z-score =12.5) in IPA.
Upstream pathway status is inferred in IPA
by considering the observed effects in their
downstream genes derived from the PAH
classifier. Other top-ranked upstream
regulators identified include additional
cytokines (IL-13, IL-10, IL-5, IL-15, and
IFN-g), two sterol regulatory element
binding transcription factors (SREBF1 and
-2), and TGFB1.

Correlation of Gene Expression to
Clinical and Pathological Information
One unique resource from the PHBI
program is the combination of lung
transcriptome data with a detailed
pathophysiological evaluation of lung tissue
(18) from the same individuals. A total of
53 patients with PAH had both data types,
and the basic clinical and pathological
information was imported into Partek.
Gene expression data was then correlated
pairwise to each individual’s clinical and
pathological data (using a cut-off r. 0.50;
Table E5). Several examples of clinical and
pathologic variables are shown in Figure 4.
CD1C and ornithine decarboxylase (ODC)
1 expression have significant correlations to
mPAP (Figure 4A; CD1C correlation r =
10.58, P = 2.63 1026, ODC1 r =20.56,
P= 6.53 1026), whereas CD27, septin (SEPT)

6, and T cell receptor–associated adapter
(TRAT) 1 were correlated to percent
inflammation scoring (Figure 4B; CD27
correlation r =10.73, P = 7.33 10211,
SEPT6 r =10.63, P = 1.13 1027, TRAT1
r =10.60, P = 8.03 1027). The correlation
analysis to percent inflammation retrieved
164 Transcript IDs, which were imported
into Enrichr for GO Biological Processes
(GO-BP) categorization. Not surprisingly,
this gene list highlights immune response
GO-BP categories, but, interestingly, the
top 10 categories (Table E6; adjusted
P, 2.03 1026) focused on T cell–related
processes, supported by recent PAH and
control lung immunophenotyping (29–31).

The PHBI program offered sufficient
numbers of samples from PAH clinical
subgroups, APAH (n = 18) and IPAH
(n = 31), to complete clinical subgroup DE
and pathway analysis (Table 4). The HPAH
subgroup had a small number of samples
(n = 6) generating a short DE gene list
insufficient for pathway analysis. PAH
subgroup analysis showed a stronger reliance
on BMP3, hepatocyte growth factor (HGF),
and TGFB3 in APAH, C-X-C chemokine
ligand (CXCL) 9 and early growth response
(EGR) 1 in IPAH, and PDE8B, carbonic
anhydrase (CA) 1, enhancer of polycomb 1
(EPC1), and Pim-2 proto-oncogene kinase
(PIM) 2 in HPAH. Table 4 also includes

PDE4B as APAH specific in contrast to
PDE8B as IPAH specific, though its fold-
change (FC) was only increased 1.263. A
stringent q value cut-off (q value, 0.001)
was used for the APAH and IPAH
comparisons in Enrichr for GO-PB gene set
enrichment analysis, consistent with the
PAH classifier cut-off (Table E7). The
APAH-to-FD comparison found 82 APAH-
specific DE genes, the IPAH-to-FD
comparison found 308 IPAH-specific DE
genes, and there were 119 DE genes in
common. Table 5 highlights the top five
GO-BP categories (Enrichr combined score.
20) overrepresented by each of these gene
lists. IPAH-specific DE genes are strongly
overrepresented in neutrophil and dendritic
immune cell types. APAH-specific DE
genes are strongly overrepresented in
phospholipase C activation and
extracellular matrix organization. The
DE genes in common to both IPAH
and APAH suggested a role for innate
immunity, as a wide array of TLRs
were represented.

Discovery of Pathway Rewiring in
PAH Using EDDY
The gene expression data preprocessed, as
described in the METHODS section, were
analyzed using the EDDY algorithm (see
Reference 21, Figure 5, and Table 6) to
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Figure 4. Gene expression correlation to clinical and histological parameters. Mean pulmonary arterial pressure (mPAP; A) and the histological variable
percent inflammation (B) were correlated to gene expression data on a per–patients with PAH basis from an extensively characterized subset of the
Pulmonary Hypertension Breakthrough Initiative biobank. Representative gene expression patterns are shown: CD1C and ODC1 correlations to mPAP
(CD1C r =10.58, P = 2.56E206; ODC1 r =20.56, P = 6.51E206) and SEPT6, TRAT1, and LAX1 correlations to percent inflammation (SEPT6 r =10.63,
P = 1.12E207; TRAT1 r =10.60, P = 8.00E207; LAX1 r =10.68, P = 6.21E209). These genes include those that were significant differentially expressed
genes between PAH and failed donors (CD1C q value = 0.00016; SEPT6 q value = 0.00059; TRAT1 q value = 0.0048; LAX1 q value = 0.03). A more
complete listing can be found in Table E5.
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identify known biological pathways
enriched with differential dependencies
between PAH and FD control lungs.
Known biological pathways (472 in total)
represented in the REACTOME (32)

database were interrogated by EDDY in the
context of the PAH and donor expression
array datasets. Across the 16 REACTOME
pathways of statistical significance, the level
of rewiring was substantial, ranging from

46% to 100% of the entire pathways
displaying some degree of alterations of
gene interdependency (Figure 6A).
Furthermore, in four of the identified
differential dependency networks, greater
than 40% of dependencies were previously
unknown, but carried statistically derived
linkages never before cataloged in prior
studies.

For some critical pathways known in
PAH, such as TGF signaling, the breadth of
rewiring relied solely on alterations of
known gene interactions, which have never
been specifically defined in PAH. Figure 6B
provides such an example where the
changing landscape of PAH-dependent
gene interdependencies are defined for
SMAD-specific E3 ubiquitin ligase
(SMURF) 1, a gene that only recently has
been linked to PAH (33). EDDY identified
TLR3 and TLR4 as central to the
REACTOME pathway describing IFN
regulatory factor (IRF)-3 and -7 activation,
potential targets for therapeutic
development (Figure 6C). Furthermore,

Table 4. PAH Subtype–Specific Differentially Regulated Genes

PAH Subtype Differentially Expressed Ratio

APAH specific (n = 49*) APAH/FD ratio
BMP3 1.58
HGF (hepatocyte growth factor) 1.84
TGFB3 1.95
PDE4B 1.26

IPAH specific (n = 67*) IPAH/FD ratio
CXCL9 1.98
EGR1 (early growth response 1) 1.95
PDE8B 1.53

HPAH specific (n = 40*) HPAH/FD ratio
CA1 2.22
EPC1 (enhancer of polycomb homolog 1) 3.05
PIM2 (PIM2 proto-oncogene STK) 2.83

Definition of abbreviations: BMP = bone morphogenetic protein; CA = carbonic anhydrase; PDE =
phosphodiesterase; PIM = Pim-2 proto-oncogene; STK = serine/threonine kinase.
*q value, 0.05 and ratio. 1.53.

Table 5. PAH Subtype Gene Ontology–Biological Process Categories

Adjusted P Value z-Score Combined Score

Term (APAH and IPAH overlap genes)
Toll-like receptor 4 signaling pathway
(GO:0034142)

3.50E205 22.553 44.469

Toll-like receptor 15 signaling pathway
(GO:0035681)

3.50E205 22.496 38.157

TIRAP-dependent toll-like receptor signaling
pathway (GO:0035664)

3.50E205 22.492 38.090

Toll-like receptor 6 signaling pathway
(GO:0034150)

3.50E205 22.491 38.080

Toll-like receptor 11 signaling pathway
(GO:0034170)

3.50E205 22.490 38.066

Term (IPAH-specific genes)
Neutrophil degranulation (GO:0043312) 2.50E206 25.241 111.566
Positive regulation of chronic inflammatory
response (GO:0002678)

0.059 22.566 26.995

Plasmacytoid dendritic cell chemotaxis
(GO:0002410)

0.066 23.290 30.770

Myeloid dendritic cell chemotaxis (GO:0002408) 0.066 23.256 30.450
Dendritic cell chemotaxis (GO:0002407) 0.066 23.244 30.339

Term (APAH-specific genes)
Phospholipase C–activating dopamine receptor
signaling pathway (GO:0060158)

0.012 22.530 28.422

Phospholipase C–activating G protein–coupled
acetylcholine receptor signaling pathway
(GO:0007207)

0.012 22.408 28.055

Phospholipase C–activating serotonin receptor
signaling pathway (GO:0007208)

0.022 22.377 22.887

Phospholipase C–activating G protein–coupled
receptor signaling pathway (GO:0007200)

0.022 22.375 22.865

Phospholipase C–activating angiotensin-activated
signaling pathway (GO:0086097)

0.022 22.413 22.538

Definition of abbreviations: GO =Gene Ontology; TIRAP = TIR domain containing adapter protein.
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rewiring was specifically observed in other
pathways more recently described to be
important in PAH pathogenesis, such as
glutamine metabolism and its pathogenic
reliance on the enzyme glutaminase (GLS)
1 (see Reference 34, Figure 6D). As
illustrated specifically in the gene
dependency network of FD tissue,
our findings identified an as-of-yet
undescribed gene connection between
GLS and an essentiality mediator gene,
phosphoglycerate dehydrogenase
(PHGDH). In the gene dependency
network of PAH tissue; however, this link
disappeared and was replaced by a known
connection between GLS and ornithine
aminotransferase (OAT) and a novel
connection to glutamate-ammonia ligase

(GLUL). These pathways results are
publicly available at the online (http://www.
sychanlab.pitt.edu/sysbio/eddy/phbi/).

Characterization of Sex-Specific
Gene Expression in PAH
Because of the extreme sex imbalance of the
PHBI patient collection, we corrected for sex
along with batch in the initial analysis,
making determination of PAH sex-based
gene expression difficult. To circumvent this
difficulty, a supervised analysis using sex-
based DE in human lung tissue (n = 213 gene
[35]) was completed. Interestingly, there
were 71 DE genes that were different
between patients with PAH and FD patients
(P, 0.05; Table E7). As expected for our
corrected dataset, none of these genes had

residual significance when analyzed by sex.
When this gene list was imported into
Enrichr for GO-BP enrichment, the top-
ranked category was “response to hydrogen
peroxide,” whereas there was a notable
pattern of negative regulation of WNT-
related processes (Table 7 and Table E8).

Discussion

Until now, the comprehensive gene
expression landscape across a large number
of human group 1 PAH lung tissues had not
been reported, limited greatly by the small
number of tissues accessible for this type of
analysis. Hoffmann and colleagues (36)
provided an overview of microarray studies
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Figure 5. Knowledge-assisted Evaluation of Differential DependencY (EDDY) workflow. By analyzing transcriptomic gene expression levels, EDDY
interrogates gene sets (in this case, pathways defined by the REACTOME database) for dependencies evident between any given two pathway genes and
present in either or both conditions tested (PAH vs. FD control subjects). To do so, EDDY compares network likelihood distribution over multiple networks
constructed for each condition via resampling, and the statistical significance of the divergence is estimated using a permutation test. Notably, using prior
knowledge of REACTOME pathways, previously defined gene dependencies that result from EDDY analysis can be distinguished from statistically inferred
dependencies that have never been reported previously. Differential dependency networks can then be constructed for gene sets that display statistically
significant rewiring between patients with PAH versus FD control subjects. DB = database.
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in pulmonary hypertension using a variety
of source tissues, where other previously
reported lung-based expression studies
included patients with pulmonary fibrosis. By
a number of quality control measures and
independent validation, we have shown that
the multicenter PHBI gene expression dataset
is robust at discriminating the transcriptomic
landscape of lung PAH tissue compared with
FD tissue. Specific genes and pathways
previously implicated in the PAH disease
process were found altered in the
transcriptome analysis, with the effects in the
direction expected from extensive literature

findings and approved therapeutics (1, 17).
Of course, mRNA levels are not perfectly
reflective of protein levels. The current best
estimate for a variety of human tissues shows
a correlation of r =10.40 for mRNA and
protein levels (37). This correlation can be
improved to r =10.88 by normalizing across
the 12 different tissues they analyzed. We
compared the PHBI transcriptomic dataset to
a published PAH versus control lung
homogenate proteomic study (38). In line
with the expectation from other tissues, our
data gave 38% agreement in direction of
change in expression with the proteomic data.

The potential power of pathway analysis
is looking at groups of biologically connected
genes without necessarily relying on single
gene measurements. Numerous applications
of validated computations algorithms applied
to this dataset revealed both expected and
surprising gene and pathway connections to
PAH, including immune, sex, metabolic, and
BMP signaling. Thus, we envision these data
and analyses as a unique and valuable
resource for traditional molecular discovery
and for reference and analytic overlay as
further -omics analyses emerge in this
historically neglected condition (39).

Table 6. EDDY Analysis of the PAH Transcriptome

Pathway DB
No.

Genes P Value JS
New

Dependency Rewiring
Essentiality
Mediators

Specificity
Mediators

Formation of ATP by
chemiosmotic coupling

R 16 0.0053 0.9675 0 0.62 ATP5H ATP5A1
ATP5C1 ATP5B

—

Mitochondrial tRNA
aminoacylation

R 21 0.0084 0.9882 0.47 0.8 VARS2 CARS2
HARS2

—

TGF-b receptor signaling
in EMT

R 16 0.0104 0.9441 0 0.79 ARHGEF18 CGN —

Translocation of ZAP70
to immunological
synapse

R 14 0.0164 0.922 0 0.46 HLA-DQA1 ZAP70 CD3E CD4

RNA Pol I transcription
initiation

R 25 0.0231 0.9705 0.08 0.72 GTF2H3 CDK7
GTF2H4

RRN3

CDC6 association with
the ORC origin
complex

R 11 0.0268 0.9471 0.14 0.75 ORC1 —

DCC-mediated attractive
signaling

R 13 0.0296 0.9604 0.04 0.67 DOCK1 WASL
NTN1

—

Amino acid synthesis and
interconversion
transamination

R 17 0.0337 0.9196 0.65 0.68 PYCR1 PHGDH —

Activation of IRF3/IRF7
mediated by TBK1
IKKe

R 14 0.0341 0.9647 0.05 0.89 TLR3 TICAM1
RPS27A

—

tRNA aminoacylation R 42 0.0342 0.9669 0.42 0.57 DARS MARS
VARS2
YARS YARS2
EPRS

CARS2 MARS2 TARS2
VARS2 SARS2 NARS2
FARS2 PARS2 IARS2 LARS2
WARS2 AARS2 QARS

Resolution of AP sites via
the single nucleotide
replacement

R 12 0.0348 0.9819 0.43 1 MPG LIG3 —

mRNA decay by 3 to 5
exornase

R 11 0.0382 0.938 0.06 0.71 EXOSC6 —

Regulation of hypoxia
inducible factor HIF by
oxygen

R 25 0.0383 0.9864 0.14 0.78 RBX1 CREBBP
HIF3A

—

Phosphorylation of CD3
and TCRz chains

R 16 0.0421 0.8915 0 0.57 LCK CD4 CD3E

Activated TAK1 mediates
p38 MAPK activation

R 18 0.0482 0.9482 0.16 0.75 RIPK2 MAP3K7
IRAK2

—

mTORC1-mediated
signaling

R 11 0.0489 0.9736 0.12 0.81 EIF4E

Definition of abbreviations: AP = apurinic/apyrimidinic; DB = database; DCC = deleted in colorectal cancer; EDDY = Evaluation of Differential
DependencY; EMT = epithelial-to-mesenchymal transition; HIF = hypoxia-inducible factor; IRF = IFN-regulatory factor; JS = Jensen-Shannon
divergence estimate; MAPK =mitogen-activated protein kinase; mTORC =mTOR complex; ORC = origin complex; Pol = polymerase; TAK =mitogen-
activated protein kinase kinase kinase 7 (MAP3K7/TAK1); TBK = TANK binding kinase; TCRz = T-cell receptor; ZAP = Zeta chain of T cell receptor
associated protein kinase 70.
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Due to the size of the PHBI dataset, we
were also able to demonstrate, for the first
time, APAH- and IPAH-specific gene
expression profiles. This analysis pointed
toward the importance of phospholipase C
activation of a variety of signaling pathways

in APAH versus a neutrophil and dendritic
immune cellular response in IPAH. Further
subdivision with clinical subtypes was not
possible, due to the limited number of
treatment options and similar comorbidities
that existed within this end-stage patient

population. In addition, for the first time, we
showed lung gene expression correlation
to clinical parameters (mPAP) and
semiquantitative pathology analysis
(percent inflammation) of the PAH lungs
from the same patients (18). Beyond the
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Figure 6. Transcriptomic pathway rewiring in PAH. (A) Rewiring of pathways. Across the 16 REACTOME pathways of statistical significance, the level of
rewiring was substantial, ranging from 46% to 100% of the entire pathways, displaying some degree of alterations of gene interdependency (top row).
Notably, four of the identified differential dependency networks (DDNs) displayed rewiring only of known interactions previously cataloged by prior studies.
Conversely, in four of the DDNs, over 40% of the dependencies involved previously unknown interactions that carried statistically derived linkages never
before cataloged in prior studies (bottom row). (B–D) In each DDN, the gene interdependencies are color coded based on their presence in PAH lung
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specific (right) gene dependency networks for the pathway “Amino Acid Synthesis and Interconversion Transamination.”
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scope of this paper, the data could
potentially be used to develop a blood-
based PAH biomarker to more easily follow
a patient’s therapeutic response and/or
disease progression.

The various approaches to pathway
analysis highlight different aspects of the
PAH lung transcriptome. Standard
pathway enrichment approaches point to
an under-appreciated role of the immune
response, specifically the innate, TLR-
dependent pathway (Enrichr and IPA). The
DE genes downstream of the ESR1 suggest
a bigger role in estrogen signaling (IPA),
which is well supported in the rodent
models of PAH (40). This may help explain
some of the sex-bias paradox of greater
female incidence in PAH and/or better
long-term survival of female patients.
Upstream activator predictions point to a
global role for TNF, as well as predictions
of increased activation state of IL-10RA
and decreased activation of CSF3 and
IL-10 (IPA).

Finally, the application of EDDY, a
novel pathway analysis tool, to analyze
topological characteristics of gene
differential dependency networks previously
has been shown to be capable of defining
biological network dependencies not evident
with similar analytic tools. It has been
successfully applied to glioblastoma (21)
and adrenocortical carcinoma (41), but
never cardiopulmonary vascular diseases,
such as PAH. Here, EDDY analysis not
only revealed a number of notable
molecular insights, but, in so doing, further
supported the use of advanced statistical
approaches of big data to uncover hidden
pathogenic mechanisms in PAH, even in
the absence of larger datasets available
in cancer and other, more prevalent
conditions. Of the 16 REACTOME
pathways with statistically significant
rewiring, some have previously been
defined as critical to PAH pathogenesis,
thus offering a reassuring level of credibility
for EDDY-based statistical analyses.

Among these included TGF-b signaling
pathways, particularly as they relate to
BMPR2 signaling (42), hypoxic signaling
(24), mechanistic target of rapamycin
kinase (mTOR) transcriptional activity
(43), and amino acid synthesis mediated by
glutamine metabolism (34, 44), to name a
few. However, beyond this already-known
biology, EDDY-based analysis delineated a
specific roadmap of rewiring events that
have not been fully cataloged for PAH.
As -omics data continue to expand in
PAH beyond genomics and traditional
transcriptomics, we expect that algorithms
such as EDDY may prove to be crucial in
charting pathogenic relationships among
multiple molecular landscapes in attempts
to “reverse engineer” the molecular steps
that sit at the origin of this enigmatic
disease.

One caveat of our study that is not
readily addressed is the use of end-stage
PAH disease lung and whether this
confounds interpretation of the disease’s
pathophysiological development. In
addition, perhaps the transcriptomic
changes are a result of long-term patient
use of many different therapeutic
interventions used to maintain their quality
of life up to time of transplantation. This is
unlikely to bias the overall analysis, as, from
within the PAH classifier, one can find
many specific genes reported in literature
results from patient lung tissue, PAH
primary cells, choice of patient
therapeutics, and from the mouse and rat
animal model studies.

In conclusion, this study has improved
the understanding of the PAH lung
transcriptome, in relation to control lung
tissue, highlighting new potential upstream
regulators and significant pathway rewiring
in the disease state. We anticipate this
dataset to be useful in increasing the
understanding of the PAH lung
transcriptome and its associated changes in
transcriptional regulation and downstream
signaling pathways. Our dataset provides
several transcription-based validations of
currently approved therapeutic options, as
well as suggesting a variety of potential
targets to be investigated. From a basic
science perspective, we envision that this
hypothesis-generating resource will broaden
the approaches used in both cell culture and
animal model systems for PAH. n

Author disclosures are available with the text
of this article at www.atsjournals.org.

Table 7. Sex-biased Genes in PAH Gene Ontology–Biological Process Categories

Term
Adjusted
P Value z-Score

Combined
Score

Response to hydrogen peroxide (GO:0042542) 0.002 22.671 36.669
Positive regulation of heart induction by negative
regulation of canonical Wnt signaling pathway
(GO:0090082)

0.024 23.212 29.290

Negative regulation of canonical Wnt signaling
pathway involved in heart development
(GO:1905067)

0.024 23.187 29.167

Negative regulation of canonical Wnt signaling
pathway involved in neural crest cell differentiation
(GO:0072336)

0.024 23.185 29.144

Negative regulation of canonical Wnt signaling
pathway involved in neural plate anterior/posterior
pattern formation (GO:0060829)

0.024 23.196 29.139

Positive regulation of spinal cord association neuron
differentiation by negative regulation of canonical
Wnt signaling pathway (GO:1902844)

0.024 23.272 28.999

Negative regulation of canonical Wnt signaling
pathway involved in osteoblast differentiation
(GO:1905240)

0.024 23.407 28.882

Negative regulation of Wnt signaling pathway by Wnt
receptor internalization (GO:0038012)

0.024 22.606 22.318

Negative regulation of Wnt signaling pathway
involved in dorsal/ventral axis specification
(GO:2000054)

0.024 22.632 22.309

Negative regulation of Wnt-mediated midbrain
dopaminergic neuron differentiation (GO:1905425)

0.024 22.601 22.273

Negative regulation of Wnt signaling pathway
involved in digestive tract morphogenesis
(GO:2000057)

0.024 22.598 22.252

Negative regulation of Wnt signaling pathway
involved in heart development (GO:0003308)

0.024 22.559 21.688
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Martin C, Antigny F, et al. NMDA-type glutamate receptor activation
promotes vascular remodeling and pulmonary arterial hypertension.
Circulation 2018;137:2371–2389.

ORIGINAL RESEARCH

Stearman, Bui, Speyer, et al.: PAH Transcriptome: New Insights into Pathogenesis 649


	link2external
	link2external
	link2external

