TOXICOLOGICAL SCIENCES, 2018, 1-15

OXFORD

SOT Society of Toxicology

doi: 10.1093/toxsci/kfy197 Advance Access Publication Date: August 9, 2018 Research Article

Expression of Genes Encoding for Xenobiotic Metabolism After Exposure to Dialkylnitrosamines in the Chicken Egg Genotoxicity Alternative Model

Tetyana Kobets,^{*,1} Michael J. Iatropoulos,^{*} Jiandong D. Duan,^{*} Klaus D. Brunnemann,^{*} Dumitru A. Iacobas,[†] Sanda Iacobas,^{*} Esther Vock,[‡] Ulrich Deschl,[‡] and Gary M. Williams^{*}

¹Department of Pthology, New York Medical College, Valhalla, New York 10595; [†]Center for Computational Systems Biology, Prairie View A&M University, Prairie View, Texas 77446; and [†]Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach an der Riss, Germany 88397

^{*}To whom correspondence should be addressed at Department of Pathology, New York Medical College, 40 Sunshine Cottage Rd, BSB # 413, Valhalla, NY 10595. Fax: (914) 594-4163. E-mail: tetyana_kobets@nymc.edu

ABSTRACT

The Chicken Egg Genotoxicity Assay (CEGA) demonstrated responsiveness to various DNA-reactive chemicals requiring metabolic activation, which implies broad bioactivation capability. To assess potential metabolic competence, expression profiles of metabolic genes in the embryo-chicken fetal liver were determined using microarray technology. Fertilized chicken eggs were injected under the CEGA protocol with vehicle (deionized water [DW]), the activation-dependent carcinogens, diethylnitrosamine (DEN), and N-nitrosodiethanolamine (NDELA) at doses producing no effect on survival. Previously in CEGA, DEN produced DNA damage, whereas NDELA did not. Expressions of 463 genes known to encode for phase I and II of endo- and xenobiotic metabolism were detected on the array. DW did not affect the expression of the selected genes, deregulating less than 1% of them. In contrast, DEN at 2 mg/egg and NDELA at 4 mg/egg produced significant transcriptomic alterations, up-regulating up to 41% and down-regulating over 31% of studied genes. Both nitrosamines modulated the majority of the genes in a similar manner, sharing 64 up-regulated and 93 down-regulated genes with respect to control group, indicating similarity in the regulation of their metabolism by avian liver. Differences in gene expression between DEN and NDELA were documented for several phase I CYP 450 genes that are responsible for nitrosamine biotransformation, as well as for phase II genes that regulate detoxication reactions. These findings could underlie the difference in genotoxicity of DEN and NDELA in CEGA. In conclusion, the analysis of gene expression profiles in embryo-chicken fetal liver dosed with dialkylnitrosamines demonstrated that avian species possess a complex array of inducible genes coding for biotransformation.

Key words: Chicken Egg Genotoxicity Assay; gene expression profile; genes involved in xenobiotic metabolism; microarray; nitrosamines.

The Chicken Egg Genotoxicity Assay

The Chicken Egg Genotoxicity Assay (CEGA) and the related Turkey Egg Genotoxicity Assay (TEGA) are novel alternatives to animal models, which have been used for the screening of genotoxic potential of a variety of chemicals (Iatropoulos et al., 2017; Kobets et al., 2016, 2018; Williams et al., 2011a, 2014). TEGA and CEGA were developed as potential follow-up assays to the existing regulatory in vitro assays in an effort to minimize the use of rodent assays. Among important aspects of the in ovo model is the utilization of an intact organism that is not

© The Author(s) 2018. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com considered to be a live animal in compliance with Animals (Scientific Procedures) Act 1986, since the termination in CEGA occurs 10–11 days before hatching. Additionally, the nervous system of the avian embryo is not finally formed by the termination time point (Hughes, 1953), so potential discomfort to the organism during the procedure and termination does not occur. Thus, CEGA provides a useful replacement for *in vivo* genotoxicity assessment where the use of animals is undesirable or precluded. Rigorous CEGA protocol precludes many artifacts, including influences of numerous environmental factors, which is difficult to accomplish in other mature experimental animals.

Currently, CEGA is the only nonanimal model that allows for an extensive evaluation of multiple critical endpoints in the avian fetal liver indicative of potential genotoxicity, namely the comet assay for detection of DNA strand breaks (Ostling and Johanson, 1984; Singh et al., 1988; Tice et al., 2000), and the nucleotide ³²P-postlabeling assay for DNA adducts detection (Phillips and Arlt, 2014; Randerath et al., 1981). Also, the model allows assessment of other critical endpoints, including biotransformation activities (Perrone et al., 2004), cell proliferation (unpublished), histopathologic evaluation (Iatropoulos et al., 2017), and as reported here, transcriptomic analysis.

The genotoxic effects of chemicals in CEGA and TEGA are similar to those in vivo (Iatropoulos et al., 2017; Kobets et al., 2016, 2018; Williams et al., 2011a, 2014), which reflects the fact that the development and histopathological structure of the avian liver resembles that of rodents and humans (Golbar et al., 2012; Iatropoulos et al., 2017; Ross and Pawlina, 2006; Yokouchi, 2005). Moreover, avian fetal liver in early stages of development is involved in all of the metabolic processes required to sustain the developing autonomous organism (Lorr and Bloom, 1987; Sinclair and Sinclair, 1993). Thus, avian fetal liver expresses major phase I and phase II biotransformation enzymes (Hamilton et al., 1983; Ignarro and Shideman, 1968; Jackson et al., 1986; Perrone et al., 2004; Rifkind et al., 1979, 1994; Sinclair and Sinclair, 1993; Wolf and Luepke, 1997), activity of which is comparable to that in postnatal rodents (Perrone et al., 2004). These enzymes often play a major role in bioactivation of genotoxic chemical carcinogens, thereby making CEGA and TEGA attractive models for detecting effects of activation-dependent carcinogens without using an exogenous source of enzymes. Moreover, mimicking in vivo models, the avian embryo-fetus is capable of detoxication and elimination of xenobiotics, in contrast to in vitro systems (Perrone et al., 2004; Romanoff, 1960; Wolf and Luepke, 1997).

Additionally, CEGA is the first alternative genotoxicity model, which also allows analysis of tissue-specific gene expression, since it utilizes the liver of an intact organism as opposed to in vitro methods. A highly specific and sensitive, validated high-throughput microarray platform, allows the study of chicken functional genomics (Li et al., 2008). Similar to other vertebrates, approximately 35 000 distinct transcripts were identified in chicken, almost 40% of which have orthologs in other organisms (Boardman et al., 2002). Moreover, published literature provides proof of the positive correlation between gene expression patterns in chicken and other vertebrates (Nie et al., 2010), providing additional evidence that avian species can be utilized along with rodent models. While the presence of liver-specific endo- and xenobiotic-related genes has been previously described in chicken (Li et al., 2009), the modulation of their expression in response to xenobiotic exposure has not been investigated in detail.

Accordingly, in the current study, gene expression data from chicken fetal liver were analyzed for the presence and

expression of genes that code for enzymes involved in the metabolism of endo- and xenobiotics. Gene activity was assessed following repeat administration under CEGA conditions of two activation-dependent carcinogenic N-nitrosamines, diethylnitrosamine (DEN), and N-nitrosodiethanolamine (NDELA), compared with the control group injected with vehicle (DW). Data were also obtained on other genes present on the platform, but the current report focuses only on the findings for the expression of metabolic genes in order to support the proficiency of avian embryo-fetal liver in chemical biotransformation.

N-Nitrosamines

Nitrosamines have been extensively evaluated in various animal species, revealing that the majority of compounds from this group produced sufficient evidence for carcinogenicity in laboratory animals. Both, DEN and NDELA in experimental animals induce tumors in multiple sites, including liver (IARC, 1978, 2000; Lijinsky, 1987).

These nitrosamines were previously evaluated in CEGA for their genotoxic potential, revealing that DEN produced DNA damage, whereas NDELA did not (Williams et al., 2014). Similar results were obtained in another in ovo model, hen's egg micronucleus assay, which assesses mutagenic properties of chemical agents (Wolf et al., 2003). Phenotypic changes produced by these chemicals in the chicken fetal liver were congruent with the molecular alterations observed in CEGA (Iatropoulos et al., 2017). Specifically, DEN produced dose-related distortion of liver architecture, whereas livers in a group dosed with NDELA resembled those in control groups. In addition, only DEN produced agenesis of the gallbladder in chicken and turkey fetuses (Iatropoulos et al., 2017; Williams et al. 2011b). In rodents, the teratogenic potential of DEN has not been reported, which was attributed to lack of activating enzymes in the fetus (Arcos et al., 1982; IARC, 1978). Table 1 summarizes previous findings of testing DEN and NDELA in CEGA.

Genotoxicity and carcinogenicity of nitrosamines is attributed to their metabolic conversion to form alkylating agents (Lijinsky, 1987). These active metabolites then react with macromolecules, such as RNA and DNA, producing adducts at various sites, eg, O^6 of guanine, O^2 and O^4 of thymidine and uridine, and N⁶ of adenosine (Loveless, 1969; Magee, 1971; Swann and Magee, 1968). While DEN, as is the case for most genotoxic nitrosamines, is activated by cytochrome P450-mediated α -hydroxylation of the carbon adjacent to the nitrosamino group, the major metabolic route for NDELA is β-oxidation mediated by alcohol dehydrogenase (ALD) (Figure 1) (Bonfanti et al., 1987; Loeppky, 1999). This difference in metabolic routes can contribute to differences in genotoxic potential of DEN and NDELA (Lijinsky, 1987). Some studies also suggest that sulfation can play a role in activation of NDELA (Sterzel and Eisenbrand, 1986). Denitrosation, which also is mediated by cytochromes, is considered to be a detoxication pathway for nitrosamines, which competes with activation pathways (Hecht, 1997). The major elimination of the nitrosamines occurs in urine either unchanged or conjugated with glucuronide or sulfate (IARC, 1978, 2000).

MATERIALS AND METHODS

Tested chemicals. The chemical structures of the tested compounds are shown in Figure 1. DEN (CAS: 55-18-5; \geq 99% pure as reported by the supplier) and NDELA (CAS: 1116-54-7; \geq 90%) were purchased from Sigma-Aldrich (St. Louis, Missouri). Deionized water (DW) prepared with a Picopure System (Hydro

Compound	Dose Tested*, mg/egg	Assay	Results	References
DEN	0.125–4 0.125–4	Comet NPL	+ -	Williams et al. (2014) Williams et al. (2014)
	1–2	Histopathological evaluation	DEN at 1 mg/egg produced distortion of hepatocellular trabecu- lar pattern as well as severe cholangiocellular anisokaryosis, anisocytosis, and dysplasia. At 2 mg/egg, DEN produced gall- bladder agenesis and compensatory ductal metaplasia	Iatropoulos et al. (2017)
NDELA	0.5–4	Comet	-	Williams et al. (2014)
	0.5–4	NPL	-	Williams et al. (2014)
	4	Histopathological evaluation	In groups dosed with 4 mg/egg of NDELA hepatocellular trabec- ular pattern was intact with resident cell populations and elements of the ECM resembling the morphology of vehicle control group	Iatropoulos et al. (2017)

Table 1. Previous Findings of Diethylnitrosamine (DEN) and N-Nitrosodiethanolamine (NDELA) Testing in CEGA

+, positive; -, negative. *, administered in 3 daily doses on days 9, 10, and 11, with termination on days 11 (comet and NPL) or 12 and 18 (histopathological evaluation). NPL, ³²P-nucleotide postlabeling assay.

Figure 1. Metabolic conversion of diethylnitrosamine (DEN) and N-nitrosodiethanolamine (NDELA). ADH, alcohol dehydrogenase; CYP, cytochrome P450; NAD, nicotinamide-adenine dinucleotide; NADPH, nicotinamide-adenine dinucleotide phosphate (reduced form).

Services and Supplies, Garfield, New Jersey), which has an online resistance (10 MOhm) monitor, was used as a vehicle for both chemicals.

Experimental design. Fertilized specific pathogen-free premium white leghorn chicken (Gallus gallus) eggs of undetermined sex were purchased from Charles River (North Franklin, Connecticut). Upon arrival, eggs were numbered, weighed, and randomly divided into control and dosed groups (at least 10 eggs per group). The first day of incubation was designated as Day 0. Eggs were incubated in GQF Manufacturing Company Hova Bator Model 2362N styrofoam incubators (Murray McMurray Hatchery, Webster City, Iowa) with automatic egg turners at $37\pm0.5^\circ C$ and $60\pm5\%$ humidity. Viability was assessed on day 8 by transillumination, eggs that did not develop were eliminated. Control and dosed eggs were separated to avoid cross contamination. Doses of compounds were selected based on the previous findings in CEGA (Williams et al., 2014). The dose selected was the dose that produced genotoxic and morphologic effects but/or did not produce a decrease in viability levels higher than 50% (at least 50% of fetuses in the group are viable upon opening eggs at termination), in order to avoid false positive results due to cytotoxicity. Vehicle (DW) as well as tested compounds, DEN at 2 mg/egg and NDELA at 4 mg/ egg, were administered in total volume of 0.15 ml/egg via 3 daily injections into the air sac on days 9 through 11 of incubation. An additional group, environmental control, did not receive any injections. Chicken fetuses were terminated 3 h after the last injection by decapitation. Fetal weights were recorded. Livers were removed and weighed, and frozen at -80° C for subsequent gene expression analysis.

RNA extraction. Total RNA was extracted from chicken fetal liver (n = 4 liver samples per group per compound) using RNeasy Mini kit (Qiagen, Valencia, California) according to the manufacturer's protocol. The concentration of samples was determined by NanoDrop ND-2000 Spectrophotometer (NanoDrop Technologies, Wilmington, Delaware). The quality of total RNA was assessed on Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California), and RNA integrity number (RIN) was established to be on average 9.6, ranging from 10 to 8.7 for each sample.

Microarray. About 825 ng of RNA (with RIN > 9.10) was reverse transcribed and labeled with fluorescent tags Cy3/Cy5 dUTP using Low Input Quick Amp Labeling Kit (Agilent Technologies). Microarray processing was performed in 4 biological replicas (4 samples [replicas] per group) as detailed in a previously published protocol (Velíšková et al., 2015) using Agilent 60 whole genome 4X44 chicken V2 microarray platform (Agilent Technologies). The hybridized slides were scanned with an Agilent Dual Laser Scanner G2539A (Agilent Technologies). The resulting images were analyzed using Agilent Feature Extraction 11.1 software. The raw intensity values were normalized using previously published algorithms (Lee et al., 2017).

Gene expression data complying with the "Minimum Information about Microarray Experiments" (MIAME) have been made available in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo) as series GSE110904 and GSE110906.

Statistical and bioinformatic analysis of microarray data. Genes were considered as regulated if their absolute fold-change exceeded

the pool estimate of biological variability and technical noise (Iacobas et al., 2018). The regulation was considered as significant if the *p*-value of the paired t-test with Bonferroni correction for multiple testing was less than 0.05 (Iacobas et al., 2007). The similarity SIM between the transcriptomic effects of the two treatments was calculated as:

$$\label{eq:SIM} \begin{split} \text{SIM} =& \frac{\{\text{DD}\} + \{\text{UU}\} - \{\text{DU}\} - \{\text{UD}\}}{\{\text{DD}\} + \{\text{UU}\} + \{\text{DU}\} + \{\text{UD}\} + \{\text{DX}\} + \{\text{XD}\} + \{\text{XU}\}} \times 100\% \end{split}$$

where $\{AB\}$ is the number of genes that were A (=up (U), down (D) or not (X)) significantly regulated in DEN-dosed eggs and B (=U/D/X) regulated in NDELA-dosed eggs.

The Pearson product-moment correlation coefficient was computed between the fold changes of genes in eggs dosed with DEN and NDELA with respect to eggs dosed with vehicle only.

Manual search, Database for Annotation, Visualization and Integrated Discovery (DAVID), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity Pathway Analysis (IPA) software were used for functional annotation, gene ontology analysis, and visualization of data. The "core analysis" function in the IPA software was used to categorize and visualize biological functions and gene networks. For each molecular pathway, *p*-value was calculated on the basis of a righttailed Fisher exact test. This test measures an overlap between genes significantly expressed in the experiment and predicted regulated gene set in a particular pathway (Krämer et al., 2014). Pathways with *p*-value <.05 were considered significant.

RESULTS

The viability of embryo-fetuses in control and dosed groups was 100%, indicating absence of toxicity.

Out of 26 145 genes present on the array, 463 genes were selected (manually and using IPA and KEGG software) for analysis based on their role in endo- and xenobiotic biotransformation. Expression of those genes in the vehicle control group (DW) were similar to that in the environmental control group, less than 1% of genes involved in encoding of xenobiotic biotrasformation enzymes were deregulated in DW group. In contrast, DEN at 2 mg/egg and NDELA, at 4 mg/egg produced significant changes in gene expression patterns. As illustrated in Figure 2, most xenobiotic genes were expressed in a similar manner in groups dosed with DEN and NDELA. The similarity (SIM) index of the two groups (see Materials and Methods section) was 90.23% (Figure 2). The correlation between replicas was 0.979, indicating high consistency and high experimental quality. DEN up-regulated 66 and down-regulated 95 of metabolic genes, and NDELA up-regulated 75 and down-regulated 100 genes involved in regulation of chemical metabolism. Both compounds shared 64 up-regulated and 93 down-regulated genes.

IPA functional annotation of significantly deregulated metabolic genes, revealed significant (p = 6.92E-21) enrichment of metabolism signaling molecular pathway by either DEN or NDELA exposure (Figure 3, Supplementary Table 1). Analysis also revealed significant enrichment of cytochrome P450 panel in humans, rat, and mouse (Figure 3), indicating similarities between xenobiotic-related genes expressed in chicken fetuses compared with other species. When comparing DEN and NDELA gene expression profiles, DEN more significantly affected oxidative stress and CAR/RXR activation pathways (p = 9.83E-05 and

Figure 2. Microarray analysis of gene expression in the chicken fetal livers dosed with diethylnitrosamine (DEN) and N-nitrosodiethanolamine (NDELA) with respect to control group dosed with DW. Fold change (negative for down-regulation) of xenobiotic genes in DEN dosed eggs plotted against fold changes in NDELA dosed eggs. Note that most genes fall close to the diagonal (red line) of the equal regulation by the 2 compounds. Gene symbols are shown where space allowed.

9.72E-0.4, respectively) (Figure 3, Supplementary Table 1), which are known to be altered during carcinogenesis.

Tables 2 and 3 present the list of genes which encode phase I and II metabolic enzymes that were significantly modulated by DEN and NDELA. As evident from the tables, chicken fetal liver possesses a wide range of genes involved in xenobiotic transformation. Overall, exposure to DEN and NDELA in chicken fetal livers appeared to affect a higher number of genes regulating phase I xenobiotic metabolism, compared with that of phase II genes. The major difference in gene expression profiles of DEN and NDELA were the expression of cytochrome genes in phase I (Table 2) and genes responsible for glucuronidation in phase II (Table 3). Specifically, for phase I metabolic cytochrome genes responsible for oxidation, CYB5D2, CYP1A5, and CYP2AB4, were up-regulated by NDELA, while DEN did not significantly alter their expression. Additionally, NADPH oxidase gene, NOX4, was up-regulated by NDELA only, while abhydrolase gene, ABHD2, was up-regulated by DEN only. Over 60% of cytochrome genes detected in chicken livers belonged to either A or B subfamily. DEN and NDELA inhibited more than half of the genes involved in the processes of reduction (68%) and hydrolysis (up to 57%) (Table 2).

Among phase II genes, B3GALT2, B3GNT5, B3GNTL1, B4GALT5, GALE, GALNTL4 genes were up-regulated (with exception of GALE, which was down-regulated) by NDELA, and not significantly changed in the group that received DEN (Table 3). Additionally, NDELA up-regulated METTL6, NDST1, GSTCD genes, while DEN did not. DEN and NDELA inhibited over 50% of genes responsible for methylation (up to 62%), sulfation (up to 67%), glutathione conjugation (over 79%), and acetylation (100%). In contrast, 60% and 71% of genes involved in glucuronidation, a major detoxication pathway for nitrosamines, were induced by DEN and NDELA, respectively (Table 3).

IPA molecular network analysis also revealed only minor differences between metabolism of DEN and NDELA by embryochicken fetal liver (Figs. 4 and 5). The networks altered by DEN and NDELA include genes responsible for oxidation, mainly cytochromes from subfamily B, genes involved in reduction, as well as phase II glutathione conjugation and glucuronidation. Expression of the majority of the genes in the network was inhibited by the nitrosamines (Figs. 4 and 5).

DISCUSSION

In the present study, we have demonstrated that chicken embryo-fetal liver, under the conditions of the CEGA, expresses a wide variety (463) of genes involved in xenobiotic biotransformation. Liver was selected for analyses, since it is the primary organ utilized in CEGA, due to its high metabolic abilities, which in avian fetuses begin to develop on day 5 or even earlier (Clegg, 1964; Hamilton et al., 1983). Such early metabolic activity is due to early differentiation of avian liver, since the development of the avian fetus, in contrast to mammals, is autonomous (Sinclair and Sinclair, 1993). A notable aspect of the study is that influences of many other environmental factors is precluded in CEGA, and thus the effects observed in the model are attributable only to the tested chemicals.

Figure 3. Most significantly impacted pathways in chicken fetal livers exposed to diethylnitrosamine (DEN) (A) and N-nitrosodiethanolamine (NDELA) (B). IPA software was used to analyze and visualize pathway enrichment based on the uploaded gene list of significantly deregulated metabolic genes. See Supplementary Table 1 for details.

1. Oxidiation 1 10.000 401.15 CYT8 Cytochrome bi type A (microsoma) 532.72 2.945.35 CTB3C Cytochrome bi type A (microsoma) 532.72 2.945.35 CTB3C Cytochrome bi type A (microsoma) 532.72 2.945.35 CTB3C Cytochrome bio outer microsoma/ai membrane 4.83.39 -362.57 CTB3D Cytochrome P400, fmmily 2, subfamily A, polypeptide 1 -99.98 -36.57 CTB2AC Cytochrome P400, fmmily 2, subfamily A, polypeptide 1 -90.98 -35.93 -35.93 CTB2AC Cytochrome P400, fmmily 2, subfamily A, polypeptide 1 -12.74 -11.99 -11.99 -11.99 -11.99 -11.99 -11.99 -11.99 -11.99 -11.99 -11.99 -31.93 -35.93 <td< th=""><th>Symbol</th><th>Description</th><th>DEN</th><th>NDELA</th></td<>	Symbol	Description	DEN	NDELA
CYTB Cytochrome b -400.4 -400.3 CYS5A Cytochrome b5 reductase 2 -425.3 -426.3 CYS52 Cytochrome b5 reductase 2 -426.3 -426.3 CYS55 Cytochrome b5 outer mitochondrial membrane -43.35 -425.5 CYTS5 Cytochrome c, somatic -43.35 -45.55 CYT2C16 Cytochrome b5 outer mitochondrial membrane -43.35 -45.55 CYT2C15 Cytochrome b405, family 2, subfamily A, polypeptide 1 -14.59 -11.50 CYT2C14 Cytochrome b405, family 2, subfamily A, polypeptide 1 -11.74 -10.22 CYT2A1 Cytochrome b405, family 2, subfamily A, polypeptide 1 -11.74 -0.02 CYT4A2 Cytochrome b405 family 4 subfamily A member 2 -3.37 -5.73 CYT2A1 Cytochrome b405 family 4 subfamily A member 2 -3.37 -2.01 CYT2A2 Cytochrome b405 family 4 subfamily A member 2 -3.37 -2.01 CYT2A1 Cytochrome b405 family 4 subfamily 1 member 1 1.86 -1.33 CYT2A2 Cytochrome b405 family 2, subfamily 1 polypeptide 22 1.02 <	1. Oxidation			
CYBSA Cynchrone Ho Feducates 2 88.28 69.29 CYBSD2 Cynchrone P450, family 2, subfamily 0, polypeptide 6 -44.83 -45.67 CYBSD2 Cynchrone F405, family 2, subfamily 0, polypeptide 1 -43.93 -35.53 CYBSD3 Cynchrone F50, family 2, subfamily 0, polypeptide 1 -41.93 -85.53 CYP2A1 Cynchrone F405, family 2, subfamily 0, polypeptide 1 -11.74 -10.20 CYP3A1 Cynchrone F405, family 2, subfamily 0, polypeptide 1 -11.74 -10.20 CYP3A1 Cynchrone F405, family 2, subfamily 0, polypeptide 1 -11.74 -10.20 CYP3A1 Cynchrone F405 family 4 subfamily A member 2 3.91 3.30 CYP4A22 Cynchrone F405 family 2 subfamily 1 member 2 3.91 3.30 CYP4A22 Cynchrone F405 family 2 subfamily 1 member 2 3.91 3.30 CYP3A2 Cynchrone F405 family 2, subfamily 1 member 2 3.91 3.30 CYP4A22 Cynchrone F405 family 2, subfamily 1, polypeptide 2 1.01 1.01 CYP3A2 Cynchrone F405 3.02 2.02 1.01 CYP3A2 Cynchro	СҮТВ	Cytochrome b	-510.40	-493.15
CM852 Cynchrome b5 enductase 2 828 -60.20 CM2206 Cynchrome (>0.50, namily 2, subfamily D, polypeptide 6 -48.33 -42.57 CM35 Cynchrome (>0.50, namily 2, subfamily A, polypeptide 1 -35.33 -25.27 CM2201 Cynchrome P450, family 2, subfamily A, polypeptide 1 -14.56 -15.33 CM2201 Cynchrome P450, family 2, subfamily A, polypeptide 1 -14.56 -15.33 CM2A1 Cynchrome P450, family 2, subfamily A, polypeptide 1 -14.56 -15.33 CM2A2 Cynchrome P450 family 4, subfamily A, member 2 -391 -330 -303 CM4A2 Cynchrome P450 family 4, subfamily A, member 2 -391 -303 -267 CM4A2 Cynchrome P450 family 4, subfamily M member 2 -391 -303 -267 CM4A2 Cynchrome P450 family 4, subfamily M member 2 -303 -267 -271 -272 -271 -271 -272 -272 -271 -271 -272 -272 -271 -272 -271 -272 -272 -272 -272 -272 -272 -272 -272 -272 -272 -272 -272 -272 -	CYB5A	Cytochrome b5 type A (microsomal)	-353.72	-294.36
CM206 Cytochrone P49, family 2, subfamily 0, polypeptide 6 48.43 48.53 CYSS Cytochrone c, somatic 48.33 -32.25 CYBS1 Cytochrone P50, family 2, subfamily 0, polypeptide 1 -13.58 -13.58 CYP2A1 Cytochrone P490, family 2, subfamily 0, polypeptide 1 -11.10 -11.09 CYP2A1 Cytochrone P490, family 2, subfamily 0, polypeptide 1 -11.10 -10.12 CYP2A1 Cytochrone P490, family 2, subfamily 0, polypeptide 1 -11.09 -0.012 CYP3A7 Cytochrone P490 family 4 subfamily A member 2 -381 -353 CYP4A22 Cytochrone P490 family 4 subfamily A member 2 -381 -353 CYP4A22 Cytochrone P490 family 4 subfamily M member 2 -384 -244 CYB520 Cytochrone P490 family 2, subfamily 10 polypeptide 2 107 110 CYP2204 Cytochrone P490 family 2, subfamily M, polypeptide 2 107 110 CYP2204 Cytochrone P490 family 2, subfamily M, polypeptide 2 107 110 CYP2204 Cytochrone P490 family 2, subfamily M, polypeptide 2 107 107 CYP2204	CYB5R2	Cytochrome b5 reductase 2	-82.85	-69.29
CYCS Cytochrome (-, somatic -48.33 -42.25 CVB5B Cytochrome P5.00 (mnily 27, subfamily A, polypeptide 1 43.95 -86.55 CVP2C1B Cytochrome P4.90, (mnily 2, subfamily A, polypeptide 1 14.98 -11.50 CVP2C1B Cytochrome P4.90, (mnily 2, subfamily A, polypeptide 1 14.74 -0.22 CVP1A1 Cytochrome P4.90, (mnily 1, subfamily A, polypeptide 1 14.74 -0.22 CVP1A4 Cytochrome P4.90 (mnily 4 subfamily A member 22 -3.37 -5.75 CVP4A22 Cytochrome P4.90 family 4 subfamily A member 2 -3.37 -5.77 CVP4A22 Cytochrome P4.90 family 2 subfamily I member 1 -1.66 -1.43 CVP4A22 Cytochrome P4.90 family 2 subfamily I member 1 -0.05 -2.05 CVP221 Cytochrome P4.90 family 2, subfamily A, polypeptide 22 1.07 1.01 CVP222 Cytochrome P4.90 family 2, subfamily A, polypeptide 2 1.02 1.02 CVP221 Cytochrome P4.90 family 2, subfamily A, polypeptide 2 1.02 1.02 CVP2243 Cytochrome P4.90 family 2, subfamily A, polypeptide 2 1.02 1.02 1.02 </td <td>CYP2D6</td> <td>Cytochrome P450, family 2, subfamily D, polypeptide 6</td> <td>-49.43</td> <td>-45.67</td>	CYP2D6	Cytochrome P450, family 2, subfamily D, polypeptide 6	-49.43	-45.67
CY163 Cytochrome F95 (milly 2, subfamily A, polypeptide 1 -395.8 -25.79 CYP22A1 Cytochrome F495, family 2, subfamily A, polypeptide 1 -14.56 -15.81 CYP2A2 Cytochrome F495, family 2, subfamily A, polypeptide 1 -11.74 -10.02 CYP3A2 Cytochrome F495, family 1, subfamily A, polypeptide 1 -11.74 -10.02 CYP3A2 Cytochrome F4950, family 4, subfamily A member 2 -3.96 -3.53 CYP4A22 Cytochrome F4960 family 4 subfamily A member 2 -3.87 -3.72 CYB534 Cytochrome F4960 family 4 subfamily A member 2 -3.87 -3.73 CYB524 Cytochrome F496 family 2, subfamily J, moltemer 1 1.66 -3.48 CYB522 Cytochrome F490 family 2, subfamily J, polypeptide 1 2.65 2.01 CYP314 Cytochrome F490 2.85 2.01 2.05 2.01 CYP2141 Cytochrome F490 family 2, subfamily A, polypeptide 1 2.65 2.01 2.05 2.01 2.05 2.01 2.05 2.01 2.05 2.01 2.05 2.01 2.05 2.01 2.05 2.01	CYCS	Cytochrome c, somatic	-48.33	-32.25
CYT22.11 Cytochrome P450, family 2, subfamily C, polypeptide 1 -14.38 -11.50 CYT2C.12 Cytochrome P450, family 2, subfamily C, polypeptide 1 -14.38 -11.50 CYT2A.11 Cytochrome P450, family 1, subfamily A, polypeptide 1 -11.74 -10.22 CYT2A.11 Cytochrome P450, family 1, subfamily A, member 22 -3.36 -5.55 CYT2A.22 Cytochrome P450 family 4 subfamily A member 22 -3.37 -5.77 CYT2A.24 Cytochrome P450 family 4 subfamily A member 2 -3.36 -5.55 CYT2A.22 Cytochrome P450 family 2 subfamily 1 member 1 1.86 -1.34 CYT22.12 Cytochrome P450 family 2 subfamily 1, polypeptide 22 -1.48 -2.43 CYT22.20 Cytochrome P450 contigr 2, subfamily A, polypeptide 1 1.86 -1.34 CYT22.21 Cytochrome P450 contigr 2, subfamily A, polypeptide 1 1.86 -1.34 CYT22.41 Cytochrome P450 family 2, subfamily A, polypeptide 1 1.86 -1.35 CYT22.42 Cytochrome P450 family 2, subfamily A, polypeptide 1 1.86 -1.57 CYT22.41 Cytochrome P450 family 2, subfamily A, polypeptide 1 1.86	CYB5B	Cytochrome b5 outer mitochondrial membrane	-43.95	-36.53
CY22.18 Cytochrome P450, family 2, subfamily A, polypeptide 1 -14.88 -15.80 CYP2.AC1 Cytochrome P450, family 1, subfamily A, polypeptide 1 -14.56 -15.81 CYP3.A7 Cytochrome P450, family 1, subfamily A, polypeptide 1 -13.91 -3.00 CYP2.A2 Cytochrome P450, family 4, subfamily A, member 2 -3.31 -3.30 -2.67 CYP4.A2 Cytochrome P450 family 4 subfamily A member 2 -3.37 -2.67 CYP3.A7 Cytochrome P450 family 2, subfamily D, member 1 -1.66 .3.48 CYP2.22 Cytochrome P450 family 2, subfamily A, polypeptide 2 -1.48 -2.43 CYP2.22 Cytochrome P450 family 2, subfamily A, polypeptide 1 .3.66 .2.87 CYP2.24 Cytochrome P450 family 2, subfamily A, polypeptide 1 .3.66 .2.87 CYP2.24 Cytochrome P450 family 2, subfamily A, polypeptide 1 .3.66 .4.94 .4.94 CYP2.24 Cytochrome P450 family 2, subfamily A, polypeptide 2 .3.61 .3.61 .3.61 .3.61 .3.61 .3.61 .3.61 .3.61 .3.61 .3.61 .3.61 .3.61 .3.61	CYP27A1	Cytochrome P450, family 27, subfamily A, polypeptide 1	-39.58	-25.79
CYP2A1 Cytochrone P450, family 2, subfamily A, polypeptide 1 -11.76 -12.76 CYP2A1 Cytochrone P450 A 37 -10.09 -10.12 CYP2A4 Cytochrone P450 family 4, subfamily A member 22 -3.83 -5.75 CYP4A42 Cytochrone P450 family 4 subfamily A member 2 -3.87 -5.75 CYP3A4 Cytochrone P450 family 4 subfamily A member 2 -3.87 -5.75 CYP3A4 Cytochrone P450 family 2 subfamily U member 1 -1.66 -1.53 CYP2U1 Cytochrone P450, family 2, subfamily J, polypeptide 22 -1.48 -2.41 CYP2D2 Cytochrone P450, family 2, subfamily M, polypeptide 1 -2.65 -2.67 CYP2A5 Cytochrone P450, family 2, subfamily M, polypeptide 1 -2.66 -2.67 CYP2A1 Cytochrone P450, family 2, subfamily M, polypeptide 1 -2.61 -2.67 CYP2A1 Cytochrone P450, family 2, subfamily M, polypeptide 1 -2.63 -2.67 CYP2A1 Cytochrone P450, family 2, subfamily M, polypeptide 1 1.63 -41.41 CYP2A24 Cytochrone P450, family 2, subfamily M, polypeptide 2 5.03 -2.57	CYP2C18	Cytochrome P450, family 2, subfamily C, polypeptide 18	-14.98	-11.50
CYP1A1 Cytochrone P450, family 1, jubfamily A, polypeptide 1 -11.76 -10.22 CYP3A7 Cytochrone P450 family 4 subfamily A member 22 3.91 -3.50 CYP4A22 Cytochrone P450 family 4 subfamily A member 2 -3.97 -3.50 CYP4A22 Cytochrone P450 family 4 subfamily A member 2 -3.97 -3.57 CYP3D2 Cytochrome P450 family 4 subfamily J member 1 -1.66 -1.38 CYR2D1 Cytochrome P450 addoreductase 4 -2.61 -2.61 CYR2D2 Cytochrome P450 addoreductase 4 -2.61 -2.61 CYR2D2 Cytochrome P450, family 2, subfamily M, polypeptide 2 2.05 2.29 CYR2D4 Cytochrome P450, family 2, subfamily M, polypeptide 2 2.05 2.29 CYR2D4 Cytochrome P450, family 2, subfamily M, polypeptide 1 4.66 4.20 CYR2D4 Cytochrome P450, family 2, subfamily M, polypeptide 1 4.56 4.51 CYR2D4 Cytochrome P450, family 2, subfamily M, polypeptide 23 1.92 1.92 CYR2D4 Cytochrome P450, family 2, subfamily M, polypeptide 23 1.92 1.92 CYR2D4 C	CYP2AC1	Cytochrome P450, family 2, subfamily AC, polypeptide 1	-14.56	-15.81
CYP2A/ Cytochrone P450 A 37 -10.09 -0.02 CYPLA/ Cytochrone P450 family 4 aubfamily A member 2 -3.93 -3.50 CYP4A22 Cytochrone P450 family 4 subfamily A member 2 -3.81 -3.57 CYB2U1 Cytochrone P450 family 2 subfamily A member 2 -3.83 -3.71 CYB2U1 Cytochrome P450 family 2 subfamily U member 1 -1.68 -2.41 CYB2U2 Cytochrome P450 family 2, subfamily U member 1 1.67 -1.83 -2.42 CYP22A Cytochrome P450 family 2, subfamily A, polypeptide 22 1.27 -2.05 -2.07 CYP2A4 Cytochrome P450 family 2, subfamily A, polypeptide 1 3.68 4.00 CYP2A4 Cytochrome P450 family 2, subfamily A, polypeptide 4 4.24 4.27 CYP2A4 Cytochrome P450 family 2, subfamily A, polypeptide 1 3.63 3.53 3.53 CYP2A4 Cytochrome P450 family 2, subfamily A, polypeptide 23 5.35 3.52 3.53 3.52 3.53 3.52 3.53 3.53 3.53 3.53 3.53 3.53 3.53 3.53 3.53 3.53	CYP1A1	Cytochrome P450, family 1, subfamily A, polypeptide 1	-11.74	-10.22
CYP1A4 Cytochrome P490 family 4 subfamily A member 2 3.91 -3.55 CYP4A22 Cytochrome P490 family 4 subfamily A member 2 3.97 -5.75 CYP4A22 Cytochrome P490 family 4 subfamily J member 1 -1.66 -1.34 CYP211 Cytochrome P490 oxidoreductase 4 3.00 -2.67 CYP212 Cytochrome P490 oxidoreductase 1.00 -1.68 -2.41 P0R Cytochrome P490 oxidoreductase 1.00 1.80 -2.61 CYP2122 Cytochrome P490, family 2, subfamily A, polypeptide 22 1.80 2.85 4.91 CYP2A1 Cytochrome P490, family 2, subfamily A, polypeptide 1 4.98 4.91 CYP2A24 Cytochrome P490, family 2, subfamily A, polypeptide 1 4.92 4.91 CYP2A34 Cytochrome P490, family 2, subfamily A, polypeptide 1 4.92 4.91 CYP2A44 Cytochrome P490, family 2, subfamily A, polypeptide 1 4.92 4.91 CYP2A42 Cytochrome P490, family 2, subfamily A, polypeptide 1 4.92 4.91 CYP2A54 Cytochrome P490, family 2, subfamily D, polypeptide 23 1.92 7.95 <t< td=""><td>CYP3A7</td><td>Cytochrome P450 A 37</td><td>-11.09</td><td>-10.12</td></t<>	CYP3A7	Cytochrome P450 A 37	-11.09	-10.12
CTV4A22 Cytochrome P450 family 4 subfamily A member 2 -3.91 -3.80 -5.71 CYBA22 Cytochrome P450 family 2 subfamily M member 2 -3.87 -5.71 CYBSN4 Cytochrome P450 family 2 subfamily M member 1 -1.66 -1.38 -2.67 CYBSD2 Cytochrome P450 family 2, subfamily M member 1 -1.68 -2.65 2.97 CYP2012 Cytochrome P450, family 2, subfamily A, polypeptide 22 1.30 1.18 -2.44 CYP2024 Cytochrome P450, family 2, subfamily M, polypeptide 1 2.05 2.97 CYP2041 Cytochrome P450, family 2, subfamily M, polypeptide 1 3.88 4.90 CYP2044 Cytochrome P450, family 2, subfamily A, polypeptide 1 4.88 4.80 CYP2144 Cytochrome P450, family 2, subfamily A, polypeptide 1 4.88 4.80 CYP2144 Cytochrome P450, family 2, subfamily B, polypeptide 2 5.53 3.52 CYP2144 Cytochrome P450, family 2, subfamily C, polypeptide 1 1.865 1.81 CYP214 Cytochrome P450, family 2, subfamily C, polypeptide 1 1.857 7.753 CYP214 Cytochrome P450, family	CYP1A4	Cytochrome P450 1A4	-3.96	-5.55
CTV4422 Cytochrome P450 family 4 subfamily A member 2 -387 -571 CYB53K Cytochrome P450 family 2 subfamily U member 1 -1.66 -1.34 CYR2D1 Cytochrome P450 family 2 subfamily 1 polypeptide 2 -1.84 -2.41 CYR2D2 Cytochrome P450 family 2, subfamily 1, polypeptide 22 1.83 -1.84 -2.41 CYR2D2 Cytochrome P450, family 2, subfamily 4, polypeptide 1 3.88 -2.05 -2.05 CYR2V1 Cytochrome P450, family 2, subfamily 4, polypeptide 1 3.88 -4.70 -2.05 -	CYP4A22	Cytochrome P450 family 4 subfamily A member 22	-3.91	-3.50
CYB5R4 Cytochrome 195 reductase 4 -3.00 -2.67 CYP2U1 Cytochrome 195 domain containing 2 -1.48 -2.44 CYB5D2 Cytochrome 195 domain containing 2 -1.48 -2.44 CVR Cytochrome 1950, family 2, subfamily 1, polypeptide 22 100 1.66 CYP2DA1 Cytochrome 1950, family 2, subfamily AB, polypeptide 1 2.68 2.07 CYP2A4 Cytochrome 1950, family 2, subfamily AB, polypeptide 4 4.24 4.14 CYP2A4 Cytochrome 1950, family 2, subfamily AB, polypeptide 4 4.26 4.05 CYP2A4 Cytochrome 1950, family 2, subfamily AB, polypeptide 1 8.65 3.05 CYP2A4 Cytochrome 1950, family 2, subfamily B, polypeptide 1 8.65 3.05 CYP2A5 Cytochrome 1950, family 2, subfamily C, polypeptide 1 8.65 3.05 CYP2A14 Cytochrome 1950, family 2, subfamily A, polypeptide 1 8.65 3.05 CYP2A15 Cytochrome 1950, family 1, subfamily A, polypeptide 1 8.65 3.05 3.05 CYP2A14 Cytochrome 1950, family 12, subfamily C, polypeptide 2 5.05 3.05 3.05 <	CYP4A22	Cytochrome P450 family 4 subfamily A member 2	-3.87	-5.71
CYP211 Cytochrome P450 family 2 subfamily U member 1 -1.66 -1.48 POR Cytochrome P450 oxidoreductase 167 1.60 CYP222 Cytochrome P450, family 2, subfamily A, polypeptide 22 1.67 1.60 CYP20A1 Cytochrome P450, family 2, subfamily A, polypeptide 1 3.68 2.05 2.07 CYP20A1 Cytochrome P450, family 2, subfamily A, polypeptide 1 3.68 2.06 CYP20A1 Cytochrome P450, family 2, subfamily A, polypeptide 1 4.88 4.08 CYP20A1 Cytochrome P450, family 2, subfamily A, polypeptide 1 4.88 4.08 CYP2A4 Cytochrome P450, family 2, subfamily C, polypeptide 2a 12.32 12.33 CYP2C3A Cytochrome P450, family 2, subfamily C, polypeptide 2a 12.53 3.22.37 CYP2A1 Cytochrome P450, family 2, subfamily C, polypeptide 1 12.57 12.33 CYP21A2 Cytochrome P450, family 2, subfamily C, polypeptide 1 12.57 12.36 CYP21A2 Cytochrome P450, family 2, subfamily C, polypeptide 1 12.57 12.36 CYP21A2 Cytochrome P450, family 2, subfamily C, polypeptide 1 12.57 <	CYB5R4	Cytochrome b5 reductase 4	-3.00	-2.67
CYB5D2 Cytochrome b5 domain containing 2 -1.48 -2.41 POR Cytochrome P450, Gamily 2, subfamily 1, polypeptide 22 1.57 1.69 CYP20A1 Cytochrome P450, family 2, subfamily A, polypeptide 1 3.68 2.15 CYP20A1 Cytochrome P450, family 2, subfamily A, polypeptide 1 3.68 4.17 CYP20A4 Cytochrome P450, family 2, subfamily A, polypeptide 4 4.24 4.10 CYP20A5 Cytochrome P450, family 7, subfamily A, polypeptide 1 4.58 4.00 CYP2A64 Cytochrome P450, family 7, subfamily A, polypeptide 23 12.29 11.30 CYP2A14 Cytochrome P450, family 7, subfamily R, polypeptide 1 8.63 8.63 CYP2A14 Cytochrome P450, family 7, subfamily R, polypeptide 1 8.63 8.63 CYP2A14 Cytochrome P450, family 7, subfamily C, polypeptide 1 8.63 15.15 CYP2D4P Cytochrome P450, family 7, subfamily C, polypeptide 1 8.157 17.16 CYP2D4P Cytochrome P450, family 7, subfamily C, polypeptide 1 8.157 17.16 CYP2D4P Cytochrome P450, family 7, subfamily Member A1 275.57 27.75 <	CYP2U1	Cytochrome P450 family 2 subfamily U member 1	-1.66	-1.34
POR Cytochrome PMS0 exidoreductase 1.67 1.18 CYP2/22 Cytochrome PMS0, family 2, subfamily 1, polypeptide 22 1.70 1.68 CYP20A1 Cytochrome PMS0, family 2, subfamily A, polypeptide 1 3.68 2.87 CYP20A1 Cytochrome PMS0, family 2, subfamily W, member 1 3.68 2.87 CYP2VA1 Cytochrome PMS0, family 2, subfamily W, member 1 3.68 4.12 CYP2A4 Cytochrome PMS0, family 2, subfamily M, polypeptide 1 4.24 4.42 CYP2A23 Cytochrome PMS0, family 2, subfamily B, polypeptide 23 153 3.05 CYP2C23A Cytochrome PMS0, family 7, subfamily B, polypeptide 23 5.53 3.222 CYP2A12 Cytochrome PMS0, family 7, subfamily C, polypeptide 2 5.53 3.222 CYP2A12 Cytochrome PMS0, family 2, subfamily L, polypeptide 2 5.53 3.222 CYP2A12 Cytochrome PMS0, family 2, subfamily L, polypeptide 2 5.53 3.222 CYP2A24 Cytochrome PMS0, family 2, subfamily L, polypeptide 2 5.53 3.222 CYP2A24 Cytochrome PMS0, family 2, subfamily L, polypeptide 2 3.53 3.222 <t< td=""><td>CYB5D2</td><td>Cytochrome b5 domain containing 2</td><td>-1.48</td><td>-2.41</td></t<>	CYB5D2	Cytochrome b5 domain containing 2	-1.48	-2.41
CYP2/22Cytochrome P450, family 2, subfamily A, polypeptide 221.201.20CYP2AA1Cytochrome P450, family 20, subfamily A, polypeptide 13.682.89CYP2W1Cytochrome P450, family 20, subfamily A, polypeptide 13.684.81CYP2W1Cytochrome P450, family 21, subfamily A, polypeptide 44.244.13CYP2AB4Cytochrome P450, family 21, subfamily A, polypeptide 14.984.43CYP2AG5Cytochrome P450, family 21, subfamily A, polypeptide 231.29211.32CYP2AG23ACytochrome P450, family 21, subfamily A, polypeptide 118.633.43CYP21A2Cytochrome P450, family 21, subfamily A, polypeptide 25.533.22.37CYP21A2Cytochrome P450, family 21, subfamily C, polypeptide 118.633.62.37CYP21A2Cytochrome P450, family 21, subfamily C, polypeptide 118.15711.16CYP224PCytochrome P450, family 21, subfamily C, polypeptide 118.15711.16CYP224PCytochrome P450, family 21, subfamily L, polypeptide 118.15711.16CYP224PCytochrome P450, family 21, subfamily L, polypeptide 118.15711.16CYP224PCytochrome P450, family 21, subfamily L, polypeptide 118.15711.16CYP224PCytochrome P450, family 2, subfamily L, poly	POR	Cytochrome P450 oxidoreductase	1.67	1.61
CYP1AS Cytochrome P450, family 20, subfamily A, polypeptide 1 2.05 2.26 CYP2A0A1 Cytochrome P450, family 2, subfamily W member 1 368 4.71 CYP2AB4 Cytochrome P450, family 2, subfamily W member 1 388 4.72 CYP2AB4 Cytochrome P450, family 2, subfamily R, polypeptide 1 4.98 4.83 CYP2AG3 Cytochrome P450, family 7, subfamily R, polypeptide 23a 1.292 1.132 CYP2AG4 Cytochrome P450, family 7, subfamily R, polypeptide 1 18.63 4.83 CYP2D1A Cytochrome P450, family 7, subfamily R, polypeptide 2 55.93 5.223 CYP21A2 Cytochrome P450, family 7, subfamily R, polypeptide 2 55.93 5.223 CYP21A2 Cytochrome P450, family 2, subfamily L, polypeptide 2 55.93 5.223 CYP21A2 Cytochrome P450, family 2, subfamily L, polypeptide 2 55.93 5.223 CYP21A2 Cytochrome P450, family 2, subfamily L, polypeptide 2 55.97 5.71 684.93 L1. Mon-microsomal oxidation 18.15 7.71 84 7.75 7.75 7.75 7.75 7.75 7.75 7.75 </td <td>CYP2J22</td> <td>Cytochrome P450, family 2, subfamily J, polypeptide 22</td> <td>1.70</td> <td>1.69</td>	CYP2J22	Cytochrome P450, family 2, subfamily J, polypeptide 22	1.70	1.69
CYP20A1 Cytochrome P450, family 20, subfamily A, polypeptide 1 3.68 2.68 CYP2W1 Cytochrome P450, family 2, subfamily AB, polypeptide 4 4.24 4.11 CYP17A1 Cytochrome P450, family 2, subfamily A, polypeptide 1 4.99 4.08 CYP17A1 Cytochrome P450, family 2, subfamily A, polypeptide 23a 2.92 1.12 CYP201 Cytochrome P450, family 2, subfamily C, polypeptide 23a 2.92 2.03 CYP21A1 Cytochrome P450, family 2, subfamily A, polypeptide 1 18.63 4.43 CYP21A2 Cytochrome P450, family 2, subfamily A, polypeptide 2 55.93 5.23 CYP21A2 Cytochrome P450, family 2, subfamily C, polypeptide 2 55.93 5.70 CYP21A2 Cytochrome P450, family 2, subfamily C, polypeptide 24 5.93 5.71 CYP21A2 Cytochrome P450, family 2, subfamily C, polypeptide 24 5.93 7.75 CYP21A2 Cytochrome P450, family 2, subfamily C, polypeptide 24 5.82 7.75 CYP21A2 Cytochrome P450, family 2, subfamily C, polypeptide 24 5.82 7.75 CYP21A2 Cytochrome P450, family 2, subfamily R, polypeptide 24 7.81 <td>CYP1A5</td> <td>Cytochrome P450</td> <td>2.05</td> <td>2.79</td>	CYP1A5	Cytochrome P450	2.05	2.79
CYP22W1 Cytochrome P450 family 2 subfamily W member 1 5.88 4.93 CYP2A84 Cytochrome 7450, family 2, subfamily A, polypeptide 1 4.93 4.93 CYP2A54 Cytochrome P450, family 2, subfamily A, polypeptide 1 4.93 4.93 CYP2C33A Cytochrome P450, family 2, subfamily B, polypeptide 23a 1.92 1.13 CYP2C34A Cytochrome P450, family 2, subfamily B, polypeptide 23a 1.95 7.75 CYP211 Cytochrome P450, family 2, subfamily B, polypeptide 2 5.53 5.76 CYP2121 Cytochrome P450, family 2, subfamily C, polypeptide 2 5.53 5.76 CYP27C1 Cytochrome P450, family 2, subfamily J, polypeptide 24, pseudogene 18.157 17.16 CYP27C1 Cytochrome P450, family 2, subfamily J, polypeptide 24, pseudogene 18.157 17.16 CYP27C1 Cytochrome P450, family 2, subfamily M, polypeptide 1 18.157 17.16 CYP27C1 Cytochrome P450, family 2, subfamily M, polypeptide 1 2.84.74 -1819 ALDH4A1 Aldehyde dehydrogenase 9 family member A1 -225.97 -227.57 -227.57 ADH1C Alcohol dehydrogenase 5 (class III),	CYP20A1	Cytochrome P450, family 20, subfamily A, polypeptide 1	3.68	2.87
CYP2APA Cytochrome P450, family 2, subfamily A, polypeptide 4 4.24 4.23 CYP17A1 Cytochrome P450, family 2, subfamily A, polypeptide 1 4.98 4.98 CYBASC3 Cytochrome P450, family 2, subfamily C, polypeptide 2 5.53 3.55 CYP2C23A Cytochrome P450, family 7, subfamily B, polypeptide 1 1.86.3 1.43.1 CYP2L2 Cytochrome P450, family 7, subfamily B, polypeptide 2 5.53 5.22.2 CYP2L2 Cytochrome P450, family 7, subfamily R, polypeptide 2 5.53 5.76 CYP2L2 Cytochrome P450, family 2, subfamily L, polypeptide 2 5.53 5.76 CYP2L2 Cytochrome P450, family 2, subfamily L, polypeptide 2 5.53 5.76 CYP2L2 Cytochrome P450, family 2, subfamily L, polypeptide 1 18.15.7 17.16 LDH4A1 Aldehyde dehydrogenase 4 family, member A1 -234.74 -181.99 ADH1C Alcohol dehydrogenase 12 (class 1), gamma polypeptide -155.12 -193.00 ADH5A1 Aldehyde dehydrogenase 1 family, member A2 -73.81 -69.88 ADH1A1 Aldehyde dehydrogenase 1 family, member A1 -5.61 -5.51	CYP2W1	Cytochrome P450 family 2 subfamily W member 1	3.88	4.79
CYP17A1 Cytochrome P450, family 17, subfamily A, polypeptide 1 4.98 4.98 CYBASC3 Cytochrome P450, family 2, subfamily G, polypeptide 23a 12.92 11.33 CYP2C23A Cytochrome P450, family 2, subfamily B, polypeptide 1 18.63 14.31 CYP2C1 Cytochrome P450, family 1, subfamily B, polypeptide 2 5.53 52.237 CYP2D1 Cytochrome P450, family 2, subfamily A, polypeptide 2 5.53 57.05 CYP27C1 Cytochrome P450, family 2, subfamily C, polypeptide 2 5.57 57.05 CYP27C1 Cytochrome P450, family 2, subfamily L, polypeptide 24, pseudogene 181.57 171.16 ALDH9A1 aldehyde dehydrogenase 9 family member A1 -275.97 -277.75 ALDH4A1 Aldehyde dehydrogenase 5 (class II), chi polypeptide -169.11 -142.19 ADH5 Alcohol dehydrogenase 5 (class II), chi polypeptide -155.12 -139.00 ALDH4A1 Aldehyde dehydrogenase 6 (class V) -9.13 -9.34 ADH6 Alcohol dehydrogenase 6 (class V) -9.13 -9.34 ADH5 Aldehyde dehydrogenase 1 family, member A1 -56.1 -55.55	CYP2AB4	Cytochrome P450, family 2, subfamily AB, polypeptide 4	4.24	4.12
CYBASC3 Cytochrome b, ascorbate dependent 3 5.51 358 CYP2C23A Cytochrome P450, family 2, subfamily G, polypeptide 23a 1292 113 CYP7B1 Cytochrome P450, family 7, subfamily B, polypeptide 1 18.63 1431 CYP21A2 Cytochrome P450, family 27, subfamily A, polypeptide 2 55.39 25.22 CYBAD1 Cytochrome P450, family 27, subfamily C, polypeptide 2 55.39 25.27 CYP21A2 Cytochrome P450, family 27, subfamily C, polypeptide 24, pseudogene 85.57 57.05 CYP27C1 Cytochrome P450, family 2, subfamily L, polypeptide 24, pseudogene 87.51 -84.99 1.1 Non-microsomal oxidation - - 725.97 -727.75 ALDH9A1 aldehyde dehydrogenase 4 family, member A1 -244.74 -181.99 ADH1C Alcohol dehydrogenase 1 (class 1), amma polypeptide -155.12 -190.81 ADH1A1 Aldehyde dehydrogenase 5 (class 10), chi polypeptide -15.82 -146.93 ALDH4A1 Aldehyde dehydrogenase 5 (ams 10), member A2 -73.81 -69.88 ALDH1A1 Aldehyde dehydrogenase 6 (ams 10) -113.82 -14.69	CYP17A1	Cytochrome P450, family 17, subfamily A, polypeptide 1	4.98	4.08
CYP2203A Cytochrome P450, family 2, subfamily B, polypeptide 23a 12.92 11.52 CYP7P31 Cytochrome P450, family 1, subfamily B, polypeptide 1 16.63 14.31 CYP1B1 Cytochrome P450, family 1, subfamily B, polypeptide 1 27.35 22.37 CYP2D12 Cytochrome P450, family 21, subfamily B, polypeptide 2 55.93 52.12 CYRED1 Cytochrome P450, family 27, subfamily D, polypeptide 1 181.57 171.64 CYP2124 Cytochrome P450, family 27, subfamily D, polypeptide 24, pseudogene 875.17 694.91 1.1. Non-microsomal oxidation -275.97 -277.75 -277.75 ALDH4A1 Aldehyde dehydrogenase 1 family, member A1 -243.44 -181.99 ADH1C Alcohol dehydrogenase 1 family, member A2 -73.81 -698.84 ADH5 Alcohol dehydrogenase 1 family, member A1 -13.82 -144.69 ADH6 Alcohol dehydrogenase 6 (class V) -9.13 -9.36 ADH5 Alcohol dehydrogenase 6 family, member A1 -5.61 -5.52 ADH6 Alcohol dehydrogenase 6 family, member A1 -5.61 -5.52 ADH6	CYBASC3	Cytochrome b, ascorbate dependent 3	5.51	3.95
CYP7B1 Cytochrome P450, family 7, subfamily 8, polypeptide 1 18.63 14.31 CYP2B1 Cytochrome P450, family 21, subfamily 8, polypeptide 2 55.93 52.21 CYP21A2 Cytochrome P450, family 21, subfamily 7, polypeptide 2 55.93 52.21 CYP21C1 Cytochrome P450, family 27, subfamily C, polypeptide 1 181.57 177.16 CYP27C1 Cytochrome P450, family 2, subfamily G, polypeptide 24, pseudogene 875.37 684.53 1.1. Non-microsomal oxidation - - 725.97 - 277.75 ALDHAA1 Aldehyde dehydrogenase 6 (class 1), gamma polypeptide - 169.11 - 142.19 ADH1C Alcohol dehydrogenase 5 (class 11), dni polypeptide - 155.12 - 139.00 ALDH3A2 Aldehyde dehydrogenase 5 (class V) - 9.13 -9.36 ALDHA1 Aldehyde dehydrogenase 6 (class V) - 9.13 -9.36 ALDH4A1 Aldehyde dehydrogenase 6 (class V) - 9.13 -9.36 ALDHA2 Aldehyde dehydrogenase 6 (class V) - 9.13 -9.36	CYP2C23A	Cytochrome P450, family 2, subfamily C, polypeptide 23a	12.92	11.32
CYP21A2 Cytochrome P450 tamily 1 subfamily A, polypeptide 2 27.35 22.32 CYP21A2 Cytochrome P450, family 27, subfamily C, polypeptide 2 55.93 52.22 CYBRD1 Cytochrome P450, family 27, subfamily C, polypeptide 1 181.57 17.15 CYP21A2 Cytochrome P450, family 27, subfamily C, polypeptide 24, pseudogene 875.17 684.59 CYP21AP Cytochrome P450, family 27, subfamily C, polypeptide 24, pseudogene 875.17 684.59 1.1. Non-microsomal oxidation -275.57 -277.57 ALDH9A1 Aldehyde dehydrogenase 9 family member A1 -234.74 -181.99 ADH5 Alcohol dehydrogenase 1C (class 1), gamma polypeptide -155.12 -139.00 ALDH3A2 Aldehyde dehydrogenase 1 (class 1), gamma polypeptide -91.31 -93.63 ALDH1A1 Aldehyde dehydrogenase 6 (class V) -91.3 -9.36 ALDH3A2 Aldehyde dehydrogenase 6 (class V) -91.3 -9.36 ALDH4A1 Aldehyde dehydrogenase 6 (class V) -91.3 -93.64 ALDH3A2 Aldehyde dehydrogenase 6 (class V) -91.3 -93.56 ALDH1A2 <	CYP7B1	Cytochrome P450, family 7, subfamily B, polypeptide 1	18.63	14.31
CYP21A2 Cytochrome P450, family 21, subfamily A, polypeptide 2 56.57 57.00 CYBRD1 Cytochrome P450, family 27, subfamily C, polypeptide 1 181.57 171.69 CYP27C1 Cytochrome P450, family 2, subfamily J, polypeptide 24, pseudogene 875.17 684.59 1.1. Non-microsomal oxidation 275.97 -277.75 ALDH4A1 Aldehyde dehydrogenase 9 family member A1 -243.44 -181.99 ADH4A1 Aldehyde dehydrogenase 1 C(class II), gamma polypeptide -155.12 -139.00 ALDH3A2 Aldehyde dehydrogenase 1 family, member A1 -73.81 -69.83 ADH5 Alcohol dehydrogenase 1 family, member A1 -13.82 -14.69 ADH5 Alcohol dehydrogenase 1 family, member A1 -13.82 -14.69 ADH5 Aldehyde dehydrogenase 1 family, member A1 -56.61 -55.57 ADH6 Alcohol dehydrogenase 1 family, member A2 25.5 2.77 MAOB Monoamine oxidase B 13.02 12.40 ALDH3A1 Aldehyde dehydrogenase 1 family, member A3 43.74 32.59 AOX1 Aldehyde dehydrogenase 1 family, member A3 43.74	CYP1B1	Cytochrome P450 family 1 subfamily B member 1	27.35	22.37
CYBEND1 Cytochrome b reductase 1 56.57 57.69 CYP27C1 Cytochrome P450, family 27, subfamily C, polypeptide 1 181.57 171.69 CYP27C1 Cytochrome P450, family 27, subfamily J, polypeptide 24, pseudogene 875.17 684.49 1.1. Non-microsomal oxidation -277.55 -277.75 ALDH9A1 aldehyde dehydrogenase 9 family member A1 -234.74 -181.99 ADH1C Alcohol dehydrogenase 1C (class II), gamma polypeptide -155.12 -139.00 ADH5 Alcohol dehydrogenase 1 family, member A2 -73.81 -669.88 ADH6 Alcohol dehydrogenase 1 family, member A1 -13.82 -14.69 ADH6 Alcohol dehydrogenase 1 family, member A1 -5.51 -5.55 ALDH1A1 Aldehyde dehydrogenase 1 family, member A1 -5.61 -5.55 ALDH3A1 Aldehyde dehydrogenase 1 family, member A2 2.54 2.77 MAOB Monoamine oxidase B 1.10.02 12.42 ALDH3A1 Aldehyde dehydrogenase 1.30.2 12.42 ADK5 Aldehyde dehydrogenase 1.30.2 12.42	CYP21A2	Cytochrome P450, family 21, subfamily A, polypeptide 2	55.93	52.22
CYP2/C1 Cytochrome P450, family 2, subfamily C, polypeptide 1 181.57 171.88 CYP2/24P Cytochrome P450, family 2, subfamily J, polypeptide 24, pseudogene 875.17 684.99 1.1. Non-microsomal oxidation -275.97 -277.75 ALDH9A1 aldehyde dehydrogenase 9 family member A1 -234.74 -181.99 ADH1C Alcohol dehydrogenase 1 (class II), chi polypeptide -166.11 -142.19 ADH5 Alcohol dehydrogenase 3 family, member A2 -73.81 -66.88 ALDH3A2 Aldehyde dehydrogenase 1 family, member A1 -11.82 -14.69 ADH6 Alcohol dehydrogenase 6 (class V) -9.13 -9.36 ALDH3A1 Aldehyde dehydrogenase 8 family, member A1 -5.61 -5.55 ALDH4A1 Aldehyde dehydrogenase 8 family, member A2 2.54 2.72 MAOB Monoamine oxidase B 13.02 1.42 ALDH3B1 Aldehyde dehydrogenase 1 family, member A3 43.74 32.59 AOX1 Aldehyde dehydrogenase 1 family, member A3 43.74 32.59 AOX1 Aldehyde dehydrogenase (ubiquinone) Fe-S protein 7 -973.54	CYBRD1	Cytochrome b reductase 1	56.57	57.05
CYP2/24PCytochrome P430, family 2, subtamily 1, polypeptide 24, pseudogeneB25.17088.35ALDH9A1aldehyde dehydrogenase 9 family member A1-275.97-277.75ALDH4A1Aldehyde dehydrogenase 9 family member A1-234.74-181.99ADH1CAlcohol dehydrogenase 5 (class II), agmma polypeptide-165.12-139.00ADH5Alcohol dehydrogenase 5 (class II), chi polypeptide-155.12-139.00ALDH3A2Aldehyde dehydrogenase 6 (class V)-9.13-9.36ALDH3A1Aldehyde dehydrogenase 6 (class V)-9.13-9.36ALDH8A1Aldehyde dehydrogenase 6 (class V)-9.13-9.36ALDH3A2Aldehyde dehydrogenase 8 family, member A1-5.61-5.55ALDH3A1Aldehyde dehydrogenase 1 family, member A22.542.72MAOBMonoamine oxidase B11.0012.64ALDH3B1Aldehyde dehydrogenase 1 family, member A343.7432.59AOX1Aldehyde dehydrogenase (bliquinone) Fe-S protein 7-982.96-588.23NDUFS7NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUF56NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFA8NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-279.45-271.95NDUFA1NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-934.55-271.95NDUFA3NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-239.45-271.95NDUFA4NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1 <t< td=""><td>CYP2/C1</td><td>Cytochrome P450, family 27, subfamily C, polypeptide 1</td><td>181.57</td><td>1/1.64</td></t<>	CYP2/C1	Cytochrome P450, family 27, subfamily C, polypeptide 1	181.57	1/1.64
1.1. Noh-microsomal oxidation1.1. Noh-microsomal oxidationALDH9A1aldehyde dehydrogenase 9 family member A1-275.97ALDH4A1Aldehyde dehydrogenase 10 (class I), gamma polypeptide-169.11-142.19ADH5Alcohol dehydrogenase 5 (class III), chi polypeptide-155.12-139.00ALDH3A2Aldehyde dehydrogenase 3 family, member A2-73.81-68.88ALDH1A1Aldehyde dehydrogenase 6 (class V)-9.13-9.13-9.14ADH6Alcohol dehydrogenase 6 (class V)-9.13-9.14ADH6Alcohol dehydrogenase 6 (class V)-9.13-5.61-5.55ALDH3A1Aldehyde dehydrogenase 6 family, member A22.542.72MAO8Monoamine oxidase B10.1011ALDH33Aldehyde dehydrogenase 1 family, member A343.7443.7443.7443.7443.7443.7443.7443.74448.11406.602. ReductionNDUFS7NADH dehydrogenase (ubiquinone) Fe-S protein 7-973.54-914.21NDUF22NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUF86NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-239.45-231.93NDUF81NADH dehydrogenase (ubiquinone) 1 beta sub	CYP2J24P	Cytochrome P450, family 2, subfamily J, polypeptide 24, pseudogene	8/5.1/	684.93
ALDHA1aldenyde denydrogenase y family member A1-275.97-277.73ALDHA11Aldehyde dehydrogenase 4 family, member A1-234.74-181.99ADH1CAlcohol dehydrogenase 1 (class 1), gamma polypeptide-165.11-142.19ADH5Alcohol dehydrogenase 5 (class III), chi polypeptide-155.12-139.00ALDH3A2Aldehyde dehydrogenase 3 family, member A2-73.81-69.88ALDH3A1Aldehyde dehydrogenase 6 (class V)-9.13-9.36ALDH8A1Aldehyde dehydrogenase 6 family, member A1-5.61-5.55ALDH3A2Aldehyde dehydrogenase 1 family, member A22.542.72ALDH3A1Aldehyde dehydrogenase 1 family, member A1-5.61-5.55ALDH3A2Aldehyde dehydrogenase 1 family, member A22.542.72ALDH3A1Aldehyde dehydrogenase 1 family, member A343.7432.59ACMMonoamine oxidase B20.2318.20ALDH331Aldehyde oxidase 12.2.59405.11406.50ALDH1A3Aldehyde oxidase 10.2.318.2012.42ACX1Aldehyde oxidase 10.2.318.2012.42ALDH33Aldehydrogenase (ubiquinone) Fe-S protein 7-982.96-588.23DHR57Dehydrogenase (ubiquinone) 1.51.5.00-973.54-914.21NDUF22NADH dehydrogenase (ubiquinone) 1.52.00-387.56-364.17-260.10NDUFA4NADH dehydrogenase (ubiquinone) 1.414.54-333.71-304.55-304.55NDUFA5NADH dehydrogenas	1.1. Non-microsom	al oxidation	075 07	077.75
ALDHA1Aldehydrogenase 4 taminy, member A1-244.74-184.39ADH1CAlcohol dehydrogenase 5 (class II), chi polypeptide-166.11-142.19ADH5Alcohol dehydrogenase 5 (class III), chi polypeptide-155.12-139.00ALDH3A2Aldehyde dehydrogenase 3 family, member A2-73.81-69.88ALDH1A1Aldehyde dehydrogenase 6 (class V)-9.13-9.36ALDH8A1Aldehyde dehydrogenase 6 family, member A1-5.61-5.55ALDH3A2Aldehyde dehydrogenase 6 family, member A1-5.61-5.55ALDH3A1Aldehyde dehydrogenase 6 family, member A22.542.77MAOBMonoamine oxidase B13.0212.42ALDH3B1Aldehyde dehydrogenase 1 family, member A343.7432.59ACM1Aldehyde dehydrogenase 1 family, member A343.7432.59ACX1Aldehyde oxidase 1-973.54-914.212. Reduction-973.54-914.21-973.54NDUFS7NADH dehydrogenase (ubiquinone) Fe-S protein 7-982.96-588.23DHRS7Dehydrogenase (ubiquinone) 1 subcomplex, 6-364.17-260.10NDUFA6NADH dehydrogenase (ubiquinone) 1 subcomplex, 8-33.31-304.55NDUFA5NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-239.45-231.93NDUFA1NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex	ALDH9A1	aldenyde denydrogenase 9 family member A1	-2/5.9/	-2/7.75
ADH5 Alcohol dehydrogenase 1c (class 1), gamma polypeptide -169,11 -142,19 ADH5 Alcohol dehydrogenase 5 (class II), chi polypeptide -155,12 -139,00 ALDH3A2 Aldehyde dehydrogenase 3 family, member A2 -73,81 -69,88 ALDH1A1 Aldehyde dehydrogenase 1 family, member A2 -9,13 -9,36 ADH6 Alcohol dehydrogenase 6 (class V) -9,13 -5,55 ALDH8A1 Aldehyde dehydrogenase 8 family, member A1 -5,61 -5,55 ALDH31 Aldehyde dehydrogenase 1 family, member A2 254 2,72 MAOB Monoamine oxidase B 13,02 12,42 ALDH331 Aldehyde dehydrogenase 13,02 12,42 ALDH33 Aldehyde oxidase 1 2,54 2,72 MAOX1 Aldehyde oxidase 1 408,11 406,60 2. Reduction 73,54 -914,21 946,41 NDUFS7 NADH dehydrogenase (ubiquinone) Fe-S protein 7 -982,96 -588,23 DHK7 Dehydrogenase (ubiquinone) 1, subcomplex uknown, 2 -401,02 -387,56 NDUFS6 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 6 -364,17 -260,10	ALDH4A1	Aldenyde denydrogenase 4 ramily, member Al	-234.74	-181.99
ALDH3A Aldehyde dehydrogenase 1 family, member A2 -153.12 -153.02 ALDH3A2 Aldehyde dehydrogenase 1 family, member A2 -73.81 -69.88 ALDH3A1 Aldehyde dehydrogenase 6 (class V) -9.13 -9.36 ALDH3A1 Aldehyde dehydrogenase 8 family, member A1 -5.61 -5.55 ALDH8A1 Aldehyde dehydrogenase 8 family, member A2 2.54 2.72 ALDH3A2 Aldehyde dehydrogenase 1 family, member A2 2.54 2.72 ALDH3A2 Aldehyde dehydrogenase 1 family, member A2 2.54 2.72 ALDH3A3 Aldehyde dehydrogenase 1 family, member A2 2.0.23 18.20 ALDH1A3 Aldehyde dehydrogenase 1 family, member A3 43.74 32.59 AOX1 Aldehyde oxidase 1 20.23 18.20 NDUFS7 NADH dehydrogenase (ubiquinone) Fe-S protein 7 -982.96 -588.23 DHKS7 Dehydrogenase (ubiquinone) 1, subcomplex unknown, 2 -401.02 -387.56 NDUFS6 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 6 -364.17 -260.10 NDUFA8 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4 -239.45 -231.93 NDUFA1	ADHIC	Alcohol dehydrogenase IC (class I), gamma polypeptide	-169.11	-142.19
ALDH3A2-73.81-63.83ALDH1A1Aldehyde dehydrogenase 1 family, member A1-13.82-14.69ALDH4A1Alcohol dehydrogenase 6 (class V)-9.13-9.36ALDH8A1Aldehyde dehydrogenase 6 (class V)-9.13-9.36ALDH3A2Aldehyde dehydrogenase 1 family, member A1-5.61-5.55ALDH3A2Aldehyde dehydrogenase 1 family, member A22.542.72MAOBMonoamine oxidase B13.0212.42ALDH3B1Aldehyde dehydrogenase20.2318.20ALDH1A3Aldehyde dehydrogenase 1 family, member A343.7432.59AOX1Aldehyde oxidase 1408.11406.602. Reduction-982.96-588.23DHR57NADH dehydrogenase (ubiquinone) Fe-S protein 7-982.96-588.23DDUFS7NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-01.02-387.56NDUFS6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 8-333.71-304.55NDUFA8NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4-239.45-231.93NDUFA4NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-196.89NDUFS5NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-196.89NDUFS5<		Aldehude dehudregenese 2 femilu, chi potypeptide	-155.12	-139.00
ALDHAI13.8214.89ADH6Alcohol dehydrogenase 1 family, member A15.615.55ALDH8A1Aldehyde dehydrogenase 8 family, member A15.615.55ALDH1A2Aldehyde dehydrogenase 1 family, member A22.542.72MAOBMonoamine oxidase B13.0212.42ALDH3B1Aldehyde dehydrogenase20.2318.20ALDH1A3Aldehyde dehydrogenase 1 family, member A343.7432.59ACX1Aldehyde oxidase 1408.11406.602. Reduction982.96-588.23DHRS7Dehydrogenase (ubiquinone) Fe-S protein 7-973.54-914.21NDUFS7NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUFR6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUFA8NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 8-333.71-304.55NDUFA4NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4-239.45-231.93NDUFA1NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-968.96NDUFS5NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-176.69-196.89NDUFS5NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69 <t< td=""><td>ALDH3AZ</td><td>Aldehyde dehydrogenase 3 family, member A2</td><td>-/3.81</td><td>-09.88</td></t<>	ALDH3AZ	Aldehyde dehydrogenase 3 family, member A2	-/3.81	-09.88
ALDrioIncluit delightingeniase 6 (class v)-9.13-9.30ALD H3A1Aldehyde dehydrogenase 8 family, member A1-5.61-5.55ALDH1A2Aldehyde dehydrogenase 1 family, member A22.542.72MAOBMonoamine oxidase B13.0212.42ALDH3B1Aldehyde dehydrogenase 1 family, member A343.7432.59AOX1Aldehyde oxidase 1408.11406.602. ReductionNDUFS7NADH dehydrogenase (ubiquinone) Fe-S protein 7-982.96-588.23DHRS7Dehydrogenase/reductase (SDR family) member 7-973.54-914.21NDUFS7NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUFB6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUFB6NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10-218.17-297.59NDUFB41NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha/beta subcomplex, 1-176.69-196.89NDUFS5NADH dehydrogenase (ubiquinone) 1 alpha/beta subcomplex, 1-127.18-90.95NDUFS9NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-127.18-90.95NDUFS9NADH dehydrogenase (ubiquinone) 1 alpha/beta subcomplex, 1-127.18-90.95NDUFS9NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-127.18-90.95NDUFS9NADH dehydrogenase	ALDHIAI	Algebel dehydrogenase f (alger M)	-13.82	- 14.09
ALDHIA1Aldehyde dehydrogenase i family, member A1-5.01-5.01ALDH1A2Aldehyde dehydrogenase 1 family, member A22.542.72MAOBMonoamine oxidase B13.0212.42ALDH3B1Aldehyde dehydrogenase 1 family, member A343.7432.59AOX1Aldehyde oxidase 1408.11406.602. Reduction		Aldohudo dohudrogonaso 8 familu mombor A1	-9.15	-9.50
ALD/ITA2Attenduct denydrogenase 1 family, member A212.9412.94MAOBMonoamine oxidase B13.0212.42ALDH3B1Aldehyde dehydrogenase20.2318.20ALDH1A3Aldehyde dehydrogenase 1 family, member A343.7432.59AOX1Aldehyde oxidase 1408.11406.602. Reduction7-982.96-588.23DHRS7Dehydrogenase/reductase (SDR family) member 7-973.54-914.21NDUFS6NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUFA6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFB10NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4-239.45-231.93NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-177.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-177.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85		Aldehyde dehydrogenase 1 family, member A2	-5.01	-3.33
ALDH3B1Aldehyde dehydrogenase 1Aldehyde dehydrogenase 1Aldehyde dehydrogenase 1ALDH1A3Aldehyde dehydrogenase 1family, member A343.7432.59AOX1Aldehyde oxidase 1406.10406.11406.002. Reduction20.2318.20NDUFS7NADH dehydrogenase (ubiquinone) Fe-S protein 7-982.96-588.23DHRS7Dehydrogenase/reductase (SDR family) member 7-973.54-914.21NDUFC2NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUFA6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFB10NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10-218.17-297.59NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-196.89NDUFS5NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-196.89NDUFS5NADH dehydrogenase (ubiquinone) Fe-S protein 5-58.90-55.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	MAOR	Monoamine ovidase B	13.02	2.72
ALDH3D1Indicingle delrydrogenaseIndicingle delrydrogenaseIndicingle delrydrogenaseALDH1A3Aldehyde dehydrogenase 1 family, member A343.7432.59AOX1Aldehyde oxidase 1408.11406.602. Reduction-982.96-588.23DHRS7Dehydrogenase/reductase (SDR family) member 7-973.54-914.21NDUFC2NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUFA6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFB10NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4-239.45-231.93NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	AIDH3B1	Aldehyde dehydrogenase	20.23	12.72
ADX1Aldehyde deflydrogenase i family, member ADADX1ADX1Ad08.11Ad06.602. Reduction-982.96-588.23NDUFS7NADH dehydrogenase (ubiquinone) Fe-S protein 7-973.54-914.21NDUFC2NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUFB6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFA4NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4-239.45-231.93NDUFA1NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha/beta subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFA1NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85		Aldehyde dehydrogenase 1 family, member A3	A3 74	22.59
NDUFNach yet ontage 1Note2. Reduction-982.96-588.23NDUFS7NADH dehydrogenase (ubiquinone) Fe-S protein 7-973.54-914.21NDUFC2NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUFB6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFA4NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4-239.45-231.95NDUFB10NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha/beta subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	AOX1	Aldehyde oxidase 1	408 11	406.60
NDUFS7NADH dehydrogenase (ubiquinone) Fe-S protein 7-982.96-588.23DHRS7Dehydrogenase/reductase (SDR family) member 7-973.54-914.21NDUFC2NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUFB6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFA4NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4-239.45-231.95NDUFA3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10-218.17-297.59NDUFA3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha/beta subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	2 Reduction	Inderfyde Oxiddoe I	100.11	100.00
DHRS7Dehydrogenase/reductase (SDR family) member 7-973.54-914.21NDUFC2NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUFB6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFA4NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-239.45-231.93NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	NDUFS7	NADH dehydrogenase (ubiquinone) Fe-S protein 7	-982.96	-588.23
NDUFC2NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2-401.02-387.56NDUFB6NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6-364.17-260.10NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFA4NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-239.45-231.93NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-57.96-54.42NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	DHRS7	Dehydrogenase/reductase (SDR family) member 7	-973 54	-914 21
NDUFB6NADH dehydrogenase (ubiquinone) 1, bata subcomplex, 6-364.17-260.10NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFA4NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-239.45-231.93NDUFB0NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10-218.17-297.59NDUFA3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1-57.96-58.90NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	NDUFC2	NADH dehydrogenase (ubiquinone) 1 subcomplex unknown 2	-401 02	-387 56
NDUFA8NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-333.71-304.55NDUFA4NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8-239.45-231.93NDUFB10NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10-218.17-297.59NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha/beta subcomplex, 1-176.69-196.89NDUFS5NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	NDUFB6	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 6	-364 17	-260 10
NDUFA4NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-239.45-231.93NDUFB10NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10-218.17-297.59NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFAB1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1-176.69-196.89NDUFS5NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-58.90AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	NDUFA8	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8	-333 71	-304 55
NDUFB10NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10-218.17-297.59NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFAB1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) Fe-S protein 5-58.90-55.42NDUFB9NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	NDUFA4	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4	-239.45	-231.93
NDUFB3NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3-197.45-146.09NDUFA1NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1-176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) Fe-S protein 5-58.90-55.42NDUFB9NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	NDUFB10	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10	-218.17	-297.59
NDUFAB1NADH dehydrogenase (ubiquinone) 1 eth mberungh, 9176.69-196.89NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) Fe-S protein 5-58.90-55.42NDUFB9NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	NDUFB3	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3	-197.45	-146.09
NDUFA1NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1-127.18-90.95NDUFS5NADH dehydrogenase (ubiquinone) Fe-S protein 5-58.90-55.42NDUFB9NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	NDUFAB1	NADH dehydrogenase (ubiquinone) 1. alpha/beta subcomplex. 1	-176.69	-196.89
NDUFS5NADH dehydrogenase (ubiquinone) Fe-S protein 5-58.90-55.42NDUFB9NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	NDUFA1	NADH dehydrogenase (ubiauinone) 1 alpha subcomplex 1	-127.18	_90.95
NDUFB9NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9-57.96-48.39AKR1B1LAldo-keto reductase family 1 member B1-like-24.11-19.85	NDUFS5	NADH dehydrogenase (ubiquinone) Fe-S protein 5	-58.90	-55.42
AKR1B1L Aldo-keto reductase family 1 member B1-like -24.11 -19.85	NDUFB9	NADH dehydrogenase (ubiauinone) 1 beta subcomplex. 9	-57.96	-48.39
	AKR1B1L	Aldo-keto reductase family 1 member B1-like	-24.11	-19.85

Table 2. List of Genes Regulating Phase I Enzymes Involved in Endobiotic/Xenobiotic Metabolism in chicken fetal liver Significantly Modulated by Injections With 2 mg/Egg of Diethylnitrosamine (DEN) and 4 mg/egg of N-Nitrosodiethanolamine (NDELA)

Table 2. (continued)

Symbol	Description	DEN	NDELA
DHRS13	Dehydrogenase/reductase (SDR family) member 13	-22.58	-16.75
NQO1	NAD(P)H dehydrogenase, quinone 1	-21.30	-17.48
DHRS7B	Dehydrogenase/reductase (SDR family) member 7B	-17.16	-14.88
NDUFB1	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1	-16.49	-18.97
C2ORF56	NADH dehydrogenase (ubiquinone) complex I, assembly factor 7	-16.30	-11.68
NDUFA9	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9	-14.33	-22.15
NDUFS3	NADH dehydrogenase (ubiquinone) Fe-S protein 3	-12.14	-13.95
NDUFS8	NADH dehydrogenase (ubiquinone) Fe-S protein 8	-11.19	-13.53
NDUFB8	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 8	-10.82	-8.97
NDUFA5	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5	-7.04	-8.13
AKR1B1L	Aldo-keto reductase family 1, member B1-like (aldose reductase)	-6.67	-7.04
NDUFA2	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2	-4.97	-4.81
NDUFA10	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10	-3.92	-3.44
NDUFV1	NADH dehydrogenase (ubiquinone) flavoprotein 1	-2.90	-2.41
AKR1B10L1	Aldo-keto reductase family 1 member B10-like 1	-2.85	-3.28
NQO2	NAD(P)H dehydrogenase, quinone 2	-2.37	-2.55
DHRS4	Dehydrogenase/reductase (SDR family) member 4	-2.37	-2.13
NOX4	NADPH oxidase 4 (NOX4)	2.12	2.53
NSDHL	NAD(P)-dependent steroid dehydrogenase-like	2.62	2.36
AKR1A1	Aldo-keto reductase family 1, member A1 (aldehyde reductase)	3.41	2.86
NDUFS1	NADH dehydrogenase (ubiquinone) Fe-S protein 1	6.22	5.07
NDUFAF1	NADH dehydrogenase (ubiquinone) complex I, assembly factor 1	7.14	7.26
DHRS12	Dehydrogenase/reductase (SDR family) member 12	7.27	7.92
DHRS11	Dehydrogenase/reductase (SDR family) member 11	8.59	5.37
NDUFV3	NADH dehydrogenase (ubiquinone) flavoprotein 3	12.19	11.68
NDUFV2	NADH dehydrogenase (ubiquinone) flavoprotein 2	19.40	15.46
AKR1B10	Aldo-keto reductase family 1, member B10 (aldose reductase)	27.17	31.24
NDUFAF4	NADH dehydrogenase (ubiquinone) complex I, assembly factor 4	44.84	46.20
DHRS3	Dehydrogenase/reductase (SDR family) member 3	79.64	80.15
NDUFAF2	NADH: ubiquinone oxidoreductase complex assembly factor 2	81.60	70.59
NDUFB2	NADH: ubiquinone oxidoreductase subunit B2	144.81	129.12
3. Hydrolysis			
TC382723	Gallus, complete	-39.13	-45.18
EPHX1L	Epoxide hydrolase 1-like	-27.91	-22.21
ABHD13	Abhydrolase domain containing 13	-24.36	-25.14
ABHD5	Abhydrolase domain containing 5	-6.42	-6.43
ABHD11	Abhydrolase domain containing 11	N/A	-7.48
ALPL	Alkaline phosphatase, liver/bone/kidney	-4.38	-4.37
ABHD3	Abhydrolase domain containing 3	N/A	-2.23
EPHX2	Epoxide hydrolase 2, cytoplasmic	-1.57	-1.56
ABHD2	Abhydrolase domain containing 2	1.42	1.18
ABHD17B	Family with sequence similarity 108, member B1	1.74	1.53
ALPP	Alkaline phosphatase	2.85	2.35
ABHD6	Abhydrolase domain containing 6	35.28	35.76
ABHD10	Abhydrolase domain containing 10	37.78	32.21
ABHD12	Abhydrolase domain containing 12	84.66	99.15

Red color indicates significantly ($p \le .05$) up-regulated genes, green color indicates significantly ($p \le .05$) down-regulated genes, yellow color indicates genes that did not significantly change their expression. Numbers in columns DEN and NDELA represent the fold change (negative for down-regulation). N/A, not quantified in all four replicas of the condition.

The expression of genes encoding for enzymes involved in phase I and II chemical biotransformation was affected by substrates for the enzymes, two dialkylnitrosamines, DEN and NDELA. These observations are consistent with previous reports of activity of metabolic enzymes in avian liver (Hamilton et al., 1983; Ignarro and Shideman, 1968; Jackson et al., 1986; Perrone et al., 2004; Rifkind et al., 1979, 1994; Sinclair and Sinclair, 1993; Wolf and Luepke, 1997), and the reports that their activity is modulated by the enzyme inducer phenobarbital and other xenobiotics, eg, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), 3methylcholanthrene, and ethanol (Perrone et al., 2004; Rifkind et al., 1979, 1994; Sinclair et al., 1989; Sinclair and Sinclair, 1993). Our findings confirm and extend knowledge on the metabolic competency of avian embryo-fetal liver.

Previous testing of DEN and NDELA in CEGA (Table 1) revealed that chicken fetal liver was capable of bioactivation, evidenced by DNA damage and teratogenic effects produced by DEN in the assay, as well as to differentiate genotoxic and non-genotoxic chemicals, despite their structural similarities (Williams et al., 2014). The analysis of gene expression modulations induced by the two nitrosamines contributes to clarification of the mode of action of these chemicals in CEGA. The tested total dose for each compound was the highest dose previously tested in CEGA, which was known for DEN, to produce

Symbol	Description	DEN	NDELA
1. Methylation			
METTL7A	Methyltransferase like 7A	N/A	-125.47
METTL21D	Methyltransferase valosin containing protein lysine (K)	-66.97	-50.59
METTL5	Methyltransferase like 5	-8.38	-8.11
METTL10	Methyltransferase like 10	-8.34	-6.79
METTL9	Methyltransferase like 9	-4.62	-4.01
METTL21A	Methyltransferase like 21A	-4.09	-4.42
MFTTI 11A	Methyltransferase like 11A	-4.02	-3.26
METTI 15	Methyltransferace like 15	-2.96	_2.47
METTI 6	Methyltransferace like 6	1 11	1.50
METTI 24	Methyltransferase like 24	2.19	2.92
METTI 10	Methyltransferage like 2A	4.74	2.02
METTI 12	Methyltransferaes like 12	4.74	0.11
METTL22	Methylitansierase ike is	19.39	20.18
METILZZ	Methyltransierase-like protein 22	23.21	27.40
2. Sulfation		50.50	
SULTIB1	Sulfotransferase family, cytosolic, 1B, member 1	-59.58	-/5.50
SULT1E1	Sulfotransferase family 1E, estrogen-preferring, member 1	-33.02	-25.56
SULT	Sulfotransferase	-8.43	-8.91
NDST2	N-Deacetylase and N-sulfotransferase 2	-2.45	-2.33
SULT6B1L	Sulfotransferase family, cytosolic, 6B, member 1-like	-1.62	-1.31
SULT1C3	Sulfotransferase family, cytosolic, 1C, member 3	N/A	-459.77
NDST1	N-Deacetylase/N-sulfotransferase (heparan glucosaminyl) 1	1.39	2.05
SULT6B1	Sulfotransferase family, cytosolic, 6B, member 1	12.30	14.69
NDST3	N-Deacetylase/N-sulfotransferase (heparan glucosaminyl) 3	31.45	28.11
3. Conjugation	with glutathione		
GPX1	Glutathione peroxidase 1	-1147.61	N/A
GSTZ1	Glutathione S-transferase zeta 1	-145.76	-219.59
GSTAL3	Glutathione S-transferase class-alpha-like 3	-129.59	-111.58
MGST3	MICROSOMAL glutathione S-transferase 3	-71.22	-78.12
GPX4	Phospholinid	-69 71	-96.71
GSTM2	Glutathione S-transferase mu 2 (muscle)	-48.89	-40.49
GSR	Glutathione reductase	-40.95	-30.70
GSTA	Glutathione S-transferase class-alpha	-27.26	-65.28
CSTO1	Clutathione S transferaça amora 1	27.20	17.70
CSTA2	Clutatione S transferace alpha 2	-23.77	-17.70
CDV2	Clutathione percendene 2	-0.20	-3.51
GFAS	Gutathione peroxidase 5	-2.01	-2.01
GSICD	Giutatnione S-transferase, C-terminal domain containing	1.22	1.65
MGS12	Microsomal glutathione S-transferase 2	4.60	5.85
GSS	Glutatnione synthetase	5.89	4.63
4. Acetylation			
NAT8B	N-Acetyltransferase 8B (GCN5-related, putative, gene/pseudogene)	-20.66	-16.13
NAT	N-Acetyltransferase, liver isozyme	-11.58	-9.91
NAT8L	N-Acetyltransferase 8-like (GCN5-related, putative)	-5.00	-4.24
NAT9	N-Acetyltransferase 9 (GCN5-related, putative)	-4.25	-4.74
5. Glucuronida	tion		
GALNT7	UDP-N-acetyl-alpha-ɒ-galactosamine: polypeptide N-acetylgalactosaminyltransferase 7	-37.27	-30.72
UGDH	UDP-glucose 6-dehydrogenase (UGDH)	-32.39	-23.46
B4GALT2	UDP-Gal: betaGlcNAc beta 1, 4-galactosyltransferase, polypeptide 2	-23.97	-17.33
UGP2	UDP-glucose pyrophosphorylase 2 (UGP2)	-7.22	-8.96
B4GALT4	UDP-Gal: betaGlcNAc beta 1, 4-galactosyltransferase, polypeptide 4	-6.93	-8.29
UXS1	UDP-glucuronate decarboxylase 1	-5.99	-5.15
B4GALT7	Xylosylprotein beta 1, 4-galactosyltransferase, polypeptide 7 (galactosyltransferase I)	-5.74	-6.21
B3GNT2	UDP-GlcNAc: betaGal beta-1, 3-N-acetylglucosaminyltransferase 2	-4.74	-4.76
GALE	UDP-galactose-4-epimerase	-1.24	-1.58
B3GNTI.1	UDP-GlcNAc; betaGal beta-1, 3-N-acetylglucosaminyltransferase-like 1	1 47	1.57
B3GALT2	UDP-Gal: betaGlcNAc beta 1, 3-galactosvltransferase, polypentide 2	1.50	1.80
B4GALT5	IIDP-Gal: betaGlcNAc beta 1 4-galactosyltransferase polypentide 5	1.56	1.94
GAINTI4	IIDP-N-acetyl-alpha-p-galactosamine: polypeptide N-acetylgalactosaminyltransferase-like 4	1 79	2.23
UCCT1	IDP-glucose glycontrotein glucosyltropeterose 1	2.24	1.70
UCT2A?	UDP ducuronosultransferase 2 family nolymentide A1	2.54	2.00
DACAIT1	UDD Calchata CloNAc bota 1.4 galactocultransferance nalumentide 1	2.47	0.70
DHOULII	obr-Gai. DetaGicinAc Deta 1, 4-galaciosythansierase, polypeptide 1	2.75	2.12

Table 3. List of Genes Regulating Phase II Enzymes Involved in Endobiotic/Xenobiotic Metabolism in chicken fetal liver Significantly Modulatedby Injections With 2 mg/Egg of Diethylnitrosamine (DEN) and 4 mg/Egg N-Nitrosodiethanolamine (NDELA)

Table 3.	(continue	ed)
----------	-----------	-----

Symbol	Description	DEN	NDELA
B3GNT5	UDP-GlcNAc: betaGal beta-1, 3-N-acetylglucosaminyltransferase 5	3.19	3.12
UGT8	UDP-galactose ceramide galactosyltransferase	3.20	2.94
UGCG	UDP-glucose ceramide glucosyltransferase	3.28	3.22
GALNT11	UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 11	3.41	2.37
B3GNT7	UDP-GlcNAc: betaGal beta-1, 3-N-acetylglucosaminyltransferase 7	4.30	4.49
B3GAT1	beta-1, 3-glucuronyltransferase 1 (glucuronosyltransferase P)	4.80	2.61
GALNT6	UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 6	5.38	6.71
GALNT12	UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 12	5.83	4.02
UGGT2	UDP-glucose glycoprotein glucosyltransferase 2	6.38	6.07
GALNT10	UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 10	7.23	6.18
B3GALT6	UDP-Gal: betaGal beta 1, 3-galactosyltransferase polypeptide 6	10.21	12.24
B3GALTL	beta 1, 3-galactosyltransferase-like	10.41	9.65
GALNTL1	UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 16	14.74	12.28
GALNT1	UDP-N-acetyl-alpha-p-galactosamine: polypeptide N-acetylgalactosaminyltransferase 1	31.02	37.33
GALNTL6	polypeptide N-acetylgalactosaminyltransferase-like 6	38.41	30.19
GALNT13	UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 13	39.06	36.56
B3GNT9	UDP-GlcNAc: betaGal beta-1, 3-N-acetylglucosaminyltransferase 9	53.98	46.67
B3GNTL2	UDP-GlcNAc: betaGal beta-1, 3-N-acetylglucosaminyltransferase-like 2	67.86	143.99
GALNT14	UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 14	115.30	111.64

Red color indicates significantly ($p \le .05$) up-regulated genes, green color indicates significantly ($p \le .05$) down-regulated genes, yellow color indicates genes that did not significantly change their expression. Numbers in columns DEN and NDELA represent the fold change (negative for down-regulation). N/A, not quantified in all four replicas of the condition.

effects on both molecular and phenotypic levels, in contrast to NDELA, but not to significantly affect viability of fetuses (Iatropoulos et al., 2017; Williams et al., 2014). Our analyses allows for phenotypic anchoring of chemical-induced gene expression changes with genotoxicity and morphological responses.

Mapping of selected metabolic genes onto IPA-established pathways of xenobiotic metabolism regulation (Supplementary Figure 1) revealed a number of genes present in chicken embryo-fetal livers with orthologs in other organisms. DEN and NDELA exposure in CEGA enriched several pathways consistent with binding and activation of several nuclear receptors: aryl hydrocarbon receptor (AHR), constitutive androstane receptor (CAR), and pregnane X receptor (RXR) (Supplementary Figure 1).

The effects of DEN on gene expression levels overlapped with that of NDELA for the majority of selected genes (Figure 2), which would be expected, since the compounds possess similarities in chemical structures as well as in pathways of biotransformation (Figure 1). Nevertheless, some differences were present, especially in the expression of genes responsible for oxidation and glucuronidation of nitrosamines. This might partially explain the difference in the genotoxic potential of DEN and NDELA in CEGA.

For many xenobiotics, including nitrosamines, biotransformation to a reactive moiety results from oxidation reactions catalyzed by cytochromes. In avian species, many forms of cytochrome P450 are well characterized (Lorr and Bloom, 1987; Sinclair and Sinclair, 1993). The induction of mixed-function oxidase system in avian embryo-fetus has been recorded as early as 3 days of development, with levels of activity being comparable with those reported for adult chicken and other species and thus, considered sufficient for metabolic activation of procarcinogens (Hamilton et al., 1983). Moreover, the activity of mixed function oxidases was reported not to depend significantly on the sex of the chicken (Rifkind et al., 1979). Consistently with other species, chicken possesses two genes

that belong to CYP1A subfamily (CYP1A4 and CYP1A5) homologous to mammalian CYP1A1 and CYP1A2, which were reported to have overlapping but distinctly different functions (Gilday et al., 1996; Goldstone and Stegeman, 2006; Yang et al., 2013). Other isoforms in avian CYP1-3 families were also identified (Watanabe et al., 2013). Consistent with reports in the literature, exposure to DEN and NDELA significantly up-regulated expression of CYP2C23a which is induced by chicken xenobiotic receptor (CXR) activator, phenobarbital (Watanabe et al., 2013). High expression levels of CYP2J24P, CYP27C1, CYBRD1, and CYP21A2 (Table 2) indicate their importance in metabolism of nitrosamines in chickens. In humans only one CYP2J is present, while in avian species multiple genes of this subfamily were identified (Watanabe et al., 2013). DEN and NDELA strongly downregulated the expression of cytochromes from B subfamily, ie, CYTB, CYB5A, and CYB5R2, genes also involved in endobiotic metabolism. Such strong inhibition of gene expression could be associated with the depletion of enzymes due to high doses of DEN and NDELA tested, or possibly these enzymes are not utilized in the metabolism of nitrosamines by chicken fetal liver.

Genes from CYP2C subfamily were also modified by DEN and NDELA exposure in CEGA (Table 2). These genes, formerly called CYP2H (Watanabe et al., 2013), encode for enzyme highly inducible by phenobarbital and other xenobiotics (Sinclair et al., 1990).

DEN did not significantly modify the expression of 3 cytochrome genes: CYB5D2, CYP1A5, as CYP2AB4 (gene found only in avian species) (Table 2). It is possible that this difference contributes to a difference in metabolic activation of DEN and NDELA by chicken fetal liver. It is also possible that since these genes are not regulated by DEN, the activity of cytochromes, which are involved in detoxication of DEN by denitrosation, is inhibited.

Published data suggest the importance of CYP2E1 in biotransformation of NDELA via α -hydroxylation pathway, producing an α -hydroxy metabolite which exhibits high levels of

Figure 4. Molecular network interactions of metabolic genes regulated by diethylnitrosamine (DEN) in chicken fetal liver. The IPA database was used to determine and visualize molecular pathways enrichment by the significantly deregulated metabolic genes. Red indicates up-regulated genes. Green indicates down-regulated genes. Note that most genes in the network are inhibited by 2 mg/egg of DEN.

cytotoxicity (IARC, 2000; Loeppky, 1999). The avian liver does not possess CYP2E genes (Watanabe et al., 2013), which possibly results in the lack of toxicity of NDELA in CEGA (Iatropoulos et al., 2017; Williams et al., 2014). This correlates with absence of genotoxicity of NDELA in vivo, due to predominant metabolism via β -oxidation (Lijinsky, 1987).

Avian and mammalian sulfotransferases (SULT) have been determined to be closely related structurally and functionally (Wilson et al., 2004). In a study conducted by Sterzel and Eisenbrand (1986), inhibition of SULT was shown to abolish DNA single strand breaks produced by NDELA in rat liver. In the current study, the majority of genes controlling SULT activity were inhibited by DEN and NDELA. Consistent with the findings of Sterzel and Eisenbrand in rats, NDELA did not produce DNA strand breaks in chicken fetal livers (Williams et al., 2014), which could be related to inhibition of SULTs. DEN did produce DNA strand break in CEGA, suggesting that SULT inhibition might not be sufficient to abolish its genotoxicity.

Genes encoding for ALD, another important enzyme in metabolism of nitrosamines (Loeppky, 1999) (Figure 1), were

Figure 5. Molecular network interactions of metabolic genes regulated by N-nitrosodiethanolamine (NDELA) in chicken fetal liver. The IPA database was used to determine and visualize molecular pathways enrichment by the significantly deregulated metabolic genes. Red indicates up-regulated genes. Green indicates down-regulated genes. Note that most genes in the network are inhibited by 4 mg/egg of NDELA.

down-regulated by exposure to DEN and NDELA (Table 2), which could again indicate their depletion by high doses of xenobiotics. Meanwhile several aldehyde dehydrogenase (ALDH) genes from family 1 and aldehyde oxidase genes, AOX1, ALDH1A3, ALDH1B1, and ALDH1A2 were significantly induced by exposure to DEN and NDELA. Previous reports also describe the increase of ALDH in rats with liver tumors produced by DEN and described that over half of DEN-produced hepatocellular carcinomas expressed tumor-associated ALDH phenotype (Canuto et al., 1993; Lindahl and Evces, 1987; Wischusen et al., 1983). While changes in ALDH activity in rodents are expressed in late stages of hepatocarcinogenesis, changes in CEGA were observed within 3 days of dosing. Thus, it is possible that induction of ALDH contributes to genotoxicity exhibited by DEN in CEGA. However, no major differences in the expression of ALDH genes were noticed between DEN- and NDELA-dosed eggs making it difficult to account for the role of these genes in genotoxicity of DEN.

The major difference between activity of xenobiotic-related genes in chicken fetal livers after dosing with DEN or NDELA were found in the group of genes that code for UDP glucuronyl transferase (UGT) activity (Table 3). It was reported that nitrosamines are conjugated in rat hepatocytes by UDP UGT, and the extent of glucuronidation depends on the lipophilicity of these chemicals (Wiench et al. 1992). Glucuronidation conjugates of nitrosamines are excreted in urine in laboratory animals and humans and are believed to be detoxication products (Hecht, 1997). In the current study, over 70% of genes encoding for UGT activity were up-regulated by NDELA, which possibly enhanced its detoxication and elimination, confirmed by negative results for its genotoxicity testing in CEGA previously. Meanwhile, DEN-dosed groups had fewer up-regulated glucuronidation genes (Table 3), which probably contributes to its genotoxicity due to lower rates of conjugation and elimination of the compound compared with NDELA.

While glutathione S-transferase (GST) levels were shown to increase in the livers of rats in response to DEN exposure (Canuto et al., 1993; Marinho et al., 1997), and preneoplastic foci produced by DEN in rat liver are positive for placental GST (Hosokawa et al., 1989; Satoh and Hatayama, 2002). In contrast, in CEGA the expression of genes coding for GST activities were mostly down-regulated (Table 3), possibly due to saturation of the pathway by the high dose of nitrosamines. Marked decrease of glutathione transferase activities was previously described after exposure to peroxisome proliferators, eg, nafenopin, clofibrate, due to binding to the enzyme subunit (Furukawa et al., 1985).

The pathway analysis in IPA revealed a network of genes that encode for metabolic enzymes that are known to play an important role in oxidation/hydroxylation of DEN and NDELA *in vivo*, specifically cytochromes, and ALD (Figs. 1, 4, and 5), as well as enzymes crucial for detoxication of nitrosamines, GST, and UGT. This further confirms similarities between xenobiotic metabolism *in ovo* and *in vivo*.

In summary, gene expression profiling in chicken fetal liver confirmed that this organ has an extensive metabolic capacity, which mimics *in vivo* systems. The majority of genes were deregulated in a similar fashion by DEN and NDELA, indicating similarity in the metabolism of N-nitrosamines in CEGA. Difference in expression of cytochrome and glucuronidation genes could contribute to differences in the effects of DEN and NDELA in CEGA. Thus, the reported sensitivity of the CEGA to a wide variety of genotoxic carcinogens known to require bioactivation is supported by the documented expression of genes for the enzymes involved. The findings strengthen the hypothesis that *in ovo* models are attractive alternatives to assess a variety of critical endpoints of chemical carcinogenesis.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences online.

FUNDING

This work was supported by Boehringer Ingelheim Pharma GmbH & Co.

REFERENCES

- Animals (Scientific Procedures) Act 1986 Amendment Regulations. (2012). Published online: https://www.legislation.gov.uk/ukpga/1986/14/contents/enacted, last accessed January 25, 2018.
- Arcos, J. C., Woo, Y. T., and Argus, M. F. (1982). Carcinogenic cross-linking agents and alkyl donors. In *Chemical Induction of*

Cancer. Structural Bases and Biological Mechanisms, J. C. Arcos, Y. T. Woo and M. F. Argus, Eds. Vol. IIIA, pp. 169–170. Academic Press. New York, NY.

- Boardman, P. E., Sanz-Ezquerro, J., Overton, I. M., Burt, D. W., Bosch, E., Fong, W. T., Tickle, C., Brown, W. R., Wilson, S. A., and Hubbard, S. J. (2002). A comprehensive collection of chicken cDNAs. Curr. Biol. 12, 1965–1969.
- Bonfanti, M., Magagnotti, C., Fanelli, R., and Airoldi, L. (1987). Beta-oxidation of N-nitrosodiethanolamine in different animal species in vitro and in vivo. IARC Sci. Publ. 84, 91–93.
- Canuto, R. A., Muzio, G., Maggiora, M., Biocca, M. E., and Dianzani, M. U. (1993). Glutathione-S-transferase, alcohol dehydrogenase and aldehyde reductase activities during diethylnitrosamine-carcinogenesis in rat liver. *Cancer. Lett.* 68, 177–183.
- Clegg, D. J. (1964). The hen egg in toxicity and teratogenicity studies. *Food Cosmet. Toxicol.* **2**, 717–727.
- Furukawa, K., Numoto, S., Furuya, K., Furukawa, N. T., and Williams, G. M. (1985). Effects of the hepatocarcinogen nafenopin, a peroxisome proliferator, on the activities of rat liver glutathione-requiring enzymes and catalase in comparison to the action of phenobarbital. *Cancer Res.* 45, 5011–5009.
- Gilday, D., Gannon, M., Yutzey, K., Bader, D., and Rifkind, A. B. (1996). Molecular cloning and expression of two novel avian cytochrome P450 1A enzymes induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. J. Biol. Chem. 271, 33054–33059.
- Golbar, H. M., Izawa, T., Murai, F., Kuwamura, M., and Yamate, J. (2012). Immunohistochemical analyses of the kinetics and distribution of macrophages, hepatic stellate cells and bile duct epithelia in the developing rat liver. *Exp. Toxicol. Pathol.* 64, 1–8.
- Goldstone, H. M. H., and Stegeman, J. J. (2006). A revised evolutionary history of the CYP1A subfamily: gene duplication, gene conversion, and positive selection. J. Mol. Evol. **62**, 708–717.
- Hamilton, J. W., Denison, M. S., and Bloom, S. E. (1983). Development of basal and induced aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity in the chicken embryo in ovo. Proc. Natl. Acad. Sci. U.S.A. 80, 3372–3376.
- Hecht, S. S. (1997). Approaches to cancer prevention based on an understanding of N-nitrosamine carcinogenesis. Proc. Soc. Exp. Biol. Med. 216, 181–191.
- Hosokawa, S., Tatematsu, M., Aoki, T., Nakanowatari, J., Igarashi, T., and Ito, N. (1989). Modulation of diethylnitrosamineinitiated placental glutathione S-transferase positive preneoplastic and neoplastic lesions by clofibrate, a hepatic peroxisome proliferator. *Carcinogenesis* **10**, 2237–2241.
- Hughes, A. F. W. (1953). The growth of embryonic neurites. A study of cultures of chick neural tissues. J. Anat. 87, 150–162.
- Iacobas, D. A., Iacobas, S., and Spray, D. C. (2007). Connexin43 and the brain transcriptome of the newborn mice. *Genomics* **89**, 113–123.
- Iacobas, D. A., Tuli, N., Iacobas, S., Rasamny, J. K., Moscatello, A., Geliebter, J., and Tiwari, R. M. (2018). Gene master regulators of papillary and anaplastic thyroid cancer phenotypes. Oncotarget 9, 2410–2424.
- Iatropoulos, M. J., Kobets, T., Duan, J. D., Brunnemann, K. D., Vock, E., Deschl, U., and Williams, G. M. (2017). Chicken egg fetal liver DNA and histopathologic effects of structurally diverse carcinogens and non-carcinogens. *Exp. Toxicol. Pathol.* 69, 533–546.
- Ignarro, L. J., and Shideman, F. E. (1968). Catechol-O-methyl transferase and monoamine oxidase activities in the heart and liver of the embryonic and developing chick. *J. Pharmacol. Exp. Ther.* **159**, 29–37.

- International Agency for Research on Cancer (IARC). (1978). Some N-nitroso compounds. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 17, pp. 77–124. IARC Press, Lyon, France.
- International Agency for Research on Cancer (IARC). (2000). Some industrial chemicals. N-Nitrosodiethanolamine. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 77, pp. 403–438. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Lyon, France.
- Jackson, M. R., Kennedy, S. M., Lown, G., and Burchell, B. (1986). Induction of UDP-glucuronyl transferase mRNA in embryonic chick livers by phenobarbital. *Biochem. Pharmacol.* 35, 1191–1198.
- Kobets, T., Duan, J. D., Brunnemann, K. D., Etter, S., Smith, B., and Williams, G. M. (2016). Structure-activity relationships for DNA damage by alkenylbenzenes in Turkey egg fetal liver. Toxicol. Sci. 150, 301–311.
- Kobets, T., Duan, J. D., Brunnemann, K. D., Iatropoulos, M. J., Etter, S., Hickey, C., Smith, B., and Williams, G. M. (2018). In ovo testing of flavor and fragrance materials in Turkey Egg Genotoxicity Assay (TEGA), comparison of results to in vitro and in vivo data. Food Chem. Toxicol. 115, 228–243.
- Krämer, A., Green, J., Pollard, J., Jr, and Tugendreich, S. (2014). Causal analysis approaches in ingenuity pathway analysis. *Bioinformatics* 30, 523–530.
- Lee, P. R., Cohen, J. E., Iacobas, D. A., Iacobas, S., and Fields, R. D. (2017). Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons. Sci. Rep. 7, 43765.
- Li, X., Chiang, H. I., Zhu, J., Dowd, S. E., and Zhou, H. (2008). Characterization of a newly developed chicken 44K Agilent microarray. BMC Genomics **9**, 60.
- Lijinsky, W. (1987). Carcinogenicity and mutagenicity of Nnitroso compounds. Mol. Toxicol. 1, 107–119.
- Lindahl, R., and Evces, S. (1987). Changes in aldehyde dehydrogenase activity during diethylnitrosamine-initiated rat hepatocarcinogenesis. *Carcinogenesis* **8**, 785–790.
- Loeppky, R. N. (1999). The mechanism of bioactivation of Nnitrosodiethanolamine. Drug Metab. Rev. **31**, 175–193.
- Lorr, N. A., and Bloom, S. E. (1987). Ontogeny of the chicken cytochrome P-450 enzyme system. Expression and development of responsiveness to phenobarbital induction. *Biochem. Pharmacol.* 36, 3059–3067.
- Loveless, A. (1969). Possible relevance of O-6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. *Nature* **223**, 206–207.
- Magee, P. N. (1971). Toxicity of nitrosamines: their possible human health hazards. Food Cosmet. Toxicol. 9, 207–218.
- Marinho, H. S., Baptista, M., and Pinto, R. E. (1997). Glutathione metabolism in hepatomous liver of rats treated with diethylnitrosamine. *Biochim. Biophys. Acta* **1360**, 157–168.
- Nie, H., Crooijmans, R. P., Lammers, A., van Schothorst, E. M., Keijer, J., Neerincx, P. B., Leunissen, J. A., Megens, H. J., and Groenen, M. A. (2010). Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates. *PLoS One* 5, e11990.
- Ostling, O., and Johanson, K. J. (1984). Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. **123**, 291–298.
- Perrone, C. E., Ahr, H. J., Duan, J. D., Jeffrey, A. M., Schmidt, U., Williams, G. M., and Enzmann, H. G. (2004). Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens. Arch Toxicol 78, 589–598.

- Phillips, D. H., and Arlt, V. M. (2014). ³²P-postlabeling analysis of DNA adducts. Methods Mol. Biol. 1105, 127–138.
- Randerath, K., Reddy, M. V., and Gupta, R. C. (1981). ³²P-labeling test for DNA damage. Proc. Natl. Acad. Sci. U.S.A. 78, 6126–6129.
- Rifkind, A. B., Kanetoshi, A., Orlinick, J., Capdevila, J. H., and Lee, C. (1994). Purification and biochemical characterization of two major cytochrome P-450 isoforms induced by 2, 3, 7, 8tetrachlorodibenzo-p-dioxin in chick embryo liver. J. Biol. Chem. 269, 3387–3396.
- Rifkind, A. B., Troeger, M., and Petschke, T. (1979). Equality of the rates of mixed function oxidation in livers of male and female chick embryos. *Biochem. Pharmacol.* **28**, 1681–1683.
- Romanoff, A. (1960). The Avian Embryo, Structural and Functional Development. McMillan, New York.
- Ross, M. H., and Pawlina, W. (2006). Histology a Text and Atlas: With Correlated Cell and Molecular Biology, 5th ed., pp. 576–593. Lippincott, Williams & Wilkins Publishers, Philadelphia, PA.
- Satoh, K., and Hatayama, I. (2002). Anomalous elevation of glutathione S-transferase P-form (GST-P) in the elementary process of epigenetic initiation of chemical hepatocarcinogenesis in rats. Carcinogenesis 23, 1193–1198.
- Sinclair, J. F., and Sinclair, P. R. (1993). Avian cytochrome P450, In Cytochrome P450 (J. B. Schenkman and H. Greim, Eds.), pp. 259–277. Springer, Berlin, Heidelberg.
- Sinclair, J. F., Wood, S., Lambrecht, L., Gorman, N., Mende-Mueller, L., Smith, L., Hunt, J., and Sinclair, P. (1990). Isolation of four forms of acetone-induced cytochrome P-450 in chicken liver by h.p.l.c. and their enzymic characterization. *Biochem. J.* 269, 85–91.
- Sinclair, P. R., Frezza, J., Sinclair, J. F., Bement, W. J., Haugen, S., Healey, J., and Bonkovsky, H. (1989). Immunochemical detection of different isoenzymes of cytochrome P-450 induced in chick hepatocyte cultures. *Biochem. J.* 258, 237–245.
- Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. *Exp. Cell Res.* **175**, 184–191.
- Sterzel, W., and Eisenbrand, G. (1986). N-nitrosodiethanolamine is activated in the rat to an ultimate genotoxic metabolite by sulfotransferase. J. Cancer Res. Clin. Oncol. **111**, 20–24.
- Swann, P. F., and Magee, P. N. (1968). Nitrosamine-induced carcinogenesis. The alklylation of nucleic acids of the rat by Nmethyl-N-nitrosourea, dimethylnitrosamine, dimethyl sulphate and methyl methanesulphonate. *Biochem. J.* 110, 39–47.
- Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., and Sasaki, Y.
 F. (2000). Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. *Environ. Mol. Mutagen.* 35, 206–221.
- Velíšková, J., Iacobas, D. A., Iacobas, S., Sidyelyeva, G., Chachua, T., and Velíšek, L. (2015). Estradiol regulates neuropeptide Y release and the gene coupling with GABAergic and glutamatergic synapse in adult female rat dentate gyrus. J. Neuroend. 27, 911–920.
- Watanabe, K. P., Kawai, Y. K., Ikenaka, Y., Kawata, M., Ikushiro, S., Sakaki, T., and Ishizuka, M. (2013). Avian cytochrome P450 (CYP) 1-3 family genes: isoforms, evolutionary relationships, and mRNA expression in chicken liver. PLoS One 8, e75689.
- Wiench, K., Frei, E., Schroth, P., and Wiessler, M. (1992). 1-C-glucuronidation of N-nitrosodiethylamine and N-nitrosomethyl-n-pentylamine in vivo and in primary hepatocytes from rats pretreated with inducers. *Carcinogenesis* 13, 867–872.

- Williams, G. M., Brunnemann, K. D., Iatropoulos, M. J., Smart, D. J., and Enzmann, H. G. (2011). Production of liver preneoplasia and gallbladder agenesis in turkey fetuses administered diethylnitrosamine. Arch. Toxicol. 85, 681–687.
- Williams, G. M., Duan, J. D., Brunnemann, K. D., Iatropoulos, M. J., Vock, E., and Deschl, U. (2014). Chicken fetal liver DNA damage and adduct formation by activation-dependent DNA-reactive carcinogens and related compounds of several structural classes. Toxicol. Sci. 141, 18–28.
- Williams, J. G., Deschl, U., and Williams, G. M. (2011). DNA damage in fetal liver cells of turkey and chicken eggs dosed with aflatoxin B1. Arch. Toxicol. **85**, 1167–1172.
- Wilson, L. A., Reyns, G. E., Darras, V. M., and Coughtrie, M. W. (2004). cDNA cloning, functional expression, and characterization of chicken sulfotransferases belonging to the SULT1B and SULT1C families. Arch. Biochem. Biophys. 428, 64–72.
- Wischusen, S. M., Evces, S., and Lindahl, R. (1983). Changes in aldehyde dehydrogenase activity during diethylnitrosamine- or

2-acetylaminofluorene-initiated rat hepatocarcinogenesis. Cancer Res. **43**, 1710–1715.

- Wolf, T., and Luepke, N. P. (1997). Formation of micronuclei in incubated hen's eggs as a measure of genotoxicity. Mutat. Res. 394, 163–175.
- Wolf, T., Niehaus-Rolf, C., and Luepke, N. P. (2003). Investigating genotoxic and hematotoxic effects of N-nitrosodimethylamine, N-nitrosodiethylamine and N-nitrosodiethanolamine in the hen's egg-micronucleus test (HET-MN). Food Chem. Toxicol. 41, 561–573.
- Yang, J., An, J., Li, M., Hou, X., and Qiu, X. (2013). Characterization of chicken cytochrome P450 1A4 and 1A5: inter-paralog comparisons of substrate preference and inhibitor selectivity. *Comp. Biochem. Physiol. C Toxicol. Pharmacol.* 157, 337–343.
- Yokouchi, Y. (2005). Establishment of a chick embryo model for analyzing liver development and a search for candidate genes. *Dev. Growth Differ.* **47**, 357–366.