
����������	

�����������	��
	��
��
������������

��

��
��

��

��
�����

����	
�����
����		�

��������

����

�����
����������
������������

�������

�����������
����������

������������
����������

������
����������

�����	
�������

�������� ����� �
�� !"!!!!�
�� !"!!!!#
� �
�� !"!!$�� ��

��

��
��

��

��

����

P G DC1()%��&�'(�)�(���*����

��

��
� ��
������
��

����

�

�����
�����������

��������
����������

Fig 1. Evaluation of Differential DependencY (EDDY) workflow. For
a set of samples, the quantized transcriptomic data within a gene set is
used to construct a network. Through resampling, a distribution of
networks can be generated. The differentiality between two sample
groups can then be measured through the divergence of network score
distributions, with p-value evaluated via permutation test [1]

GPU-accelerated differential dependency network
analysis

Gil Speyer
The Translational Genomics

Research Institute
Phoenix, AZ, U.S.A.

gspeyer@tgen.org

Juan J. Rodriguez
The Translational Genomics

Research Institute
Phoenix, AZ, U.S.A.
jrodriguez@tgen.org

Tomas Bencomo
The Translational Genomics

Research Institute
Phoenix, AZ, U.S.A.
tbencomo@tgen.org

Seungchan Kim
Prairie View A&M University

Prairie View, TX, U.S.A.
sekim@pvamu.edu

Abstract — EDDY (Evaluation of Differential DependencY)
interrogates transcriptomic data to identify differential genetic
dependencies within a biological pathway. Through its
probabilistic framework with resampling and permutation, aided
by the incorporation of annotated gene sets, EDDY demonstrated
superior sensitivity to other methods. However, this statistical
rigor incurs considerable computational cost, limiting its
application to larger datasets. The ample and independent
computation coupled with manageable memory footprint
positioned EDDY as a strong candidate for graphical processing
unit (GPU) implementation. Custom kernels decompose the
independence test loop, network construction, network
enumeration, and Bayesian network scoring to accelerate the
computation. GPU-accelerated EDDY consistently exhibits two
orders of magnitude in performance enhancement, allowing the
statistical rigor of the EDDY algorithm to be applied to larger
datasets.

Keywords— EDDY; differential dependency analysis; gene
regulatory networks; biochemical pathways; GPU

I. INTRODUCTION
Computational analyses of large-scale genomic data

generate a large number of associations and observations that
can stand as testable hypotheses, but in powering these
hypotheses, these approaches often incur considerable
computational burden. The Evaluation of Differential
Dependency (EDDY) discovers pathways that manifest their
activities differently between two groups by computing and
comparing two dependency network likelihood distributions
from gene expression data. The method uses resampling to
estimate network likelihood distributions, then calculates the
divergence between them, with statistical significance assessed
through permutation test [2]. EDDY has been successfully
employed in the analysis of specific cancer types such as
glioblastoma [1, 2] and adrenocortical carcinoma [3] as well as
large panel of cancer cell lines [4]. The analysis, if applied to
the much larger, TCGA pan-cancer dataset, promises
compelling hypotheses on the heterogeneity of cancer.
However, EDDY’s computational demand on larger data set
sizes has proven prohibitively large. Relief from this
computational burden has presented itself in the form of
parallel computing on the Graphical Processing Unit (GPU)
architecture, as GPU’s possess thousands of computational
cores that can cope with EDDY’s large but decomposable
computational burden by processing calculations in parallel.

II. METHODS

A. Evaluation of Differential Dependency
The original Java EDDY algorithm, workflow illustrated in

Figure 1, begins with the construction of a pathway-specific
distribution of networks for each of two conditions through an
inner independence test loop over all possible edges and an
outer resampling loop. These groups of Bayesian network
structures are then distilled to a unique set and individually
assessed as functions of the data using the Bayes Dirichlet
(likelihood) equivalent uniform (BDeu) score [5]. The Jensen-
Shannon divergence can then be employed to measure the
difference of the likelihood distributions of graphs between
two conditions [6]. An additional outer permutation loop
around all of these steps is added to test for the significance of
the divergence, quantified as a p-value, between the
distributions of network scores.

Key details of the implementation: 1) Leave-one-out
resampling was implemented, which generates roughly as
many networks (before uniqueness filtering) as samples. 2)
Jensen-Shannon divergences are modeled as a beta
distribution, with its model parameters estimated from initial
permutation tests, with the p-value evaluated from the

410

26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

0-7695-6380-5/18/$31.00 ©2018 IEEE
DOI 10.1109/PDP2018.2018.00072

Fig. 2. Scheme of EDDY-GPU. After transfer of data to GPU, pairwise
comparisons of co-expression within gene sets are run for both
conditions over multiple resamplings. Restructuring of edge assessments
into condensed graph representation allows efficient parallel pairwise
comparison of networks for a minimum unique set. Once distributions
of Bayesian scores are computed across networks for both conditions,
they are transferred to CPU for divergence calculation.

estimated models. 3) EDDY also incorporates prior knowledge
of gene-gene interactions mined from the Pathway Commons 2
database (http://www.pathwaycommons.org) [1]. Partial
weighting of known edges allowed for data to determine the
condition specificity. Probabilistic and gene-set assisted
approaches together contribute to significantly higher
sensitivity and specificity of EDDY, compared to other
methods, such as Gene Set Co-expression Analysis and Gene
Set Enrichment Analysis [2].

In practice, multiple biological pathways are interrogated to
identify rewired pathways between conditions, with statistical
significance (p-value < 0.05), as our focus is to generated a
ranked list of biological pathways of interest. The multiple
testing correction can be added as a post-processing if desired.
While the probabilistic framework (via likelihood
distributions) and permutation tests result in convoluted
computational load, this nested loop is easily decomposed and
distributed to multiple nodes in a multiprocessor environment.
Hence, the Java implementation has been deployed effectively
in cluster environments in the analysis of medium-sized
RNAseq datasets over large sets of biological pathways.

B. Acceleration on GPU
EDDY-GPU, a GPU-accelerated EDDY algorithm, utilizes

the ample and independent computation coupled with
manageable memory footprint of the algorithm, broken into
three main computational kernel groups, as shown in Fig. 2.
RNAseq data for a set of samples, as well as classification
information of the samples into two condition groups, are
transferred to the GPU. The pair-wise independence tests
between all genes in a gene set used to construct graph edges
for each condition consume an ample chunk of EDDY’s Java

computation. Implemented as a kernel, independent threads
corresponding to all possible edges, and scaling with the square
of the number of genes in a pathway, can execute concurrently.
Only a small, relevant subset of the input expression data is
required for this computation, demanding a relatively small
data footprint. A two-dimensional array, indexed by the pairs
of nodes, is used to store the edge probabilities, comparable to
that implemented in the Java version. Bootstrapped
resamplings, while further scaling the computation, leverages
this same data. Thus, parallel cohorts of independence tests
process edges for each resampled network, with each network
calculated in a concurrent block of concurrent threads, and
return binary edge arrays assessed to a preset threshold.

A second group of kernels reshapes the data for network
assessment kernels by first distilling the binary edge arrays into
the node and edge lists for the condensed graph representation
[7]. A kernel first determines the size of the edge array for
allocation. Then, a subsequent kernel assigns an independent
thread to each node index within a network block, counting the
number and annotating the endpoints of the edges determined
for its node. This new data representation can now be
exploited by another pairwise comparison, but this time
between networks, through a third filter kernel that determines
the unique networks from the set determined by the
resampling. Results from parallel comparisons of node and
edge lists populate a global array, which is then referenced to
winnow out the unique networks from the master list on the
CPU. In the Java version, a similar Bayesian network data
structure had also been employed, storing lists of edges by their
sources and targets. However, uniqueness of networks was
tested as each network was serially determined.

A final kernel scores each network for each of the two
conditions, thus preparing two arrays for the divergence
calculation on the CPU. The BDeu score can be easily
decomposed into sums of logged gamma functions over states,
parents and samples, only requiring that the graph be directed
acyclic, which is easily enforced in the graph construction
kernel. The score arrays, upon transfer back to the CPU, are
used to compute the Jensen-Shannon divergence to assess the
difference of the likelihood distributions of graphs between
two conditions.

An outer loop for permutation testing is employed to assess
the significance of the divergence score. Scrambling the class
labels on the samples, the above routine is repeated to yield a
null distribution of divergence scores to estimate statistical
significance. A final, outermost loop cycles through entire
annotated pathway databases, such as REACTOME [8] and
BIOCARTA, further iterating the computation. Additional
features from the CPU implementation of EDDY (in Java
code), such as asymptotic approximation, as well as prior
knowledge of gene relationships, were also implemented to
emulate the original Java code.

III. RESULTS

A. Verification and Performance
EDDY-GPU was verified against a dataset run with the

Java version, with Jensen-Shannon scores agreeing to an

411

	�

	
�

	

�

	

�

	

�

	

�

� �� 	
� 	�� �
� ���
� �� �
� ���

��
�
��
��

���
�	
�

��

	
��

��������������

�
�������������

	

�������������

�

�������������

�

�������������

�
�������������

	

�������������

�

�������������

�

�������������

Fig 3. Performance of of EDDY-CPU and EDDY-GPU. Logarithmic
time (ms) versus gene set size, with four traces per implementation where
sample size is repeatedly doubled.

Fig 4. Differential Dependency (left) and Condition-specific
Networks (right) for TGF β receptor signaling in epithelial to
mesnechymal transition (EMT) pathway. In this identified network,
edges specific to samples from either PIK3CA wild type or mutation are
colored. All edges shown in lower left. For greater clarity, shared edges
are not shown in DDN at top left and CDNs. The networks reveal a
dramatic signaling shift between PIK3CA wild type and mutation
samples in a pathway associated with cancer progression. Known
interactions are indicated by solid line edges, while dependencies
identified solely through independence test are dashed. Square nodes
indicate mediators, genes with important roles in the network.

accuracy of four decimal places. Performance comparisons
were made between Java EDDY run on an Intel Xeon 2.3 GHz
with 33GB of RAM and EDDY-GPU run on a NVIDIA
Quadro K6000 902 MHz with 12 GB DDR5, with the
performance accelerated up to 550 times. Both the number of
samples and the number of genes in the gene set affect the
performance. The scaling behavior of the program depends on
which of these dimensions is increased, and the CPU and GPU
implementations exhibit different behavior to this scaling.

Figure 3 shows several run time trends for the CPU and
GPU implementations. The x-axis indicates gene set size,
while the y-axis indicates the logarithm of run time in ms.
Four traces are plotted for each implementation varying the
number of samples. The slopes of the CPU runtime traces
increase slightly as gene set size increases, but the distance
between these traces reveal a greater performance sensitivity to
sample size doubling. The slopes of the GPU runtime traces
are steeper than those for the CPU runtimes, revealing greater
sensitivity to geneset size. The distances between GPU
runtime traces, in response to sample size doubling, appear
smaller than those for the CPU runtimes, but appear to fan out
as gene set size increases.

The gene set size, g, scales the independence test and
scoring routines as g2. The performance with sample size is
also quadratic in the independence test routine with the nested
contingency table and resampling loops. In profiling these
codes, the majority of the compute time for the CPU
implementation was spent in the independence test, while in
the GPU implementation the majority of the compute time was
spent in the scoring kernel. Thus, the greater spacing between
the CPU runtime traces. For the GPU, the independence test
kernel distributes the processing to one thread per edge, which,
until the dataset size consumes the compute resources,
mitigates the quadratic scaling. Hence, the greatest
acceleration is seen with large sample size and small gene set
size. The scoring kernel, however, decomposes the
computation across the individual nodes. As gene set size
increases, the compute on these nodes increases quadratically,
accounting for the slope of the traces. Other factors, such as

different memory performance issues between the architectures
likely contribute to the performance differences.

B. Analysis of Larger Datasets
1) TCGA Pan-cancer dataset
 In addition to computational speed up, EDDY-GPU also

enabled the analysis of a large pan-cancer dataset from TCGA
of 4,754 samples, an order of magnitude larger than previously
possible with the original Java implementation, identifying
significantly rewired pathways between samples classified as
PIK3CA mutation (465 samples) versus wild type (4,289
sample) [9]. Runtime performance mirrored that seen for GPU
traces in Figure 3.

Over the 479 REACTOME pathways, EDDY-GPU
identified 79 rewired pathways with statistical significance.
One result of the increased power due to sample size is that the
number of pathways is larger than had previously been found
through hundreds of runs across smaller sample sizes. This
will be further discussed in the next section.

Of the 79 significant pathways, the pathway with the lowest
p-value, TGF β receptor signaling in epithelial to mesenchymal
transition, reveals a dramatic rewiring between PIK3CA wild
type and mutation sample groups. The differential dependency
network (DDN) and its constituent condition-specific networks
(CDNs) for this cancer-associated pathway are shown in Figure
4. In the DDN in the lower left, edges determined through
independence test for each of the two sample groups are
identified by color. For clarity, the DDN at top left only shows
condition-specific edges.

412

Fig 5. PIK3CA mutation (left) and wild type (right) condition-
specific networks for the PI3K AKT Activation Pathway. In these
CDNs, several mediators are identified, but PIK3CA (highlighted),
whose mutation status determined the two sample groups, is not one of
them. Shared and purely data-derived edges not shown.

Fig 6. Differential Dependency Networks from analysis of a single-
cell RNAseq dataset. Two significant pathways, PERK regulated gene
expression (left) and Regulation of the Fanconi anemia (right), contrast
mesnechymal and non-mesenchymal cell transcriptomes taken from the
same tumor sample.

Once the graph is constructed, graphical analysis is
employed to identify nodes that are “critical” for the network,
denoting those genes as mediators. For example, betweenness
centrality can identify hubs in a network corresponding to
essentiality of those genes in the biological pathway. In our
analysis, we split the network up into PIK3CA wild type and
mutation networks, calculated betweenness centrality for all
nodes, and then identified nodes that had the greatest
betweenness centrality difference between the two networks,
denoting them essentiality mediators. Other nodes with
significant rewiring of condition-specific edges were labeled
specificity mediators. In Figure 4, square nodes indicate
mediators. The wild type CDN features hub mediators such as
ARHGEF1B and FKBP1A, while the mutation samples show a
more fully connected TGF β-mediated network.

A DDN for another pathway, PI3K AKT Activation, is
shown at the bottom of Figure 5. For the 35-node network,
622 edges of a possible 1,225 were found, but, for clarity, the
shared and purely data-driven (previously unknown) edges in
the figure are not shown. Six nodes (NTRK1, NR4A1, CREB1,
PDPK1, RPS6KB2 and PIK3CB) are essentiality mediators
and three (PIK3R2, RICTOR and TSC2) are specificity
mediators. We note that PIK3CA, the very gene whose
mutation status determined the sample groups, is not a
mediator in this network. Moreover, most of the 79 identified
networks do not even contain the PIK3CA gene. Nevertheless,
EDDY-GPU was able to detect subtle differences resulting
from downstream or associated effects of the mutation across
the samples.

2) Single-cell RNAseq datasets
Single-cell RNA sequencing (scRNAseq) addresses several

shortcomings of the population-based average RNA expression
from bulk tissue analyte collection. In isolating the specific
RNA profile of individual cells, subtle changes in biological
behavior are brought into sharp focus. This allows for new
research leveraging this data to explore biological mechanisms
such as microevolution, dynamic RNA processes and rare
disease biology. Moreover, with the ability to characterize

tissues from a single patient within reach, medicine moves ever
closer to personalized therapies. The vast amount data
(thousands of cells from a single patient) from scRNAseq
provides a unique opportunity for EDDY-GPU.

Employing publicly available scRNAseq profiles of
samples from glioblastoma (GBM) patients with tumors of one
predominant subtype, differential networks could be used to
reveal subtle biological distinctions with the remaining cells in
the sample, shedding light on mechanisms within intratumoral
heterogeneity [10]. Patel and colleagues profiled 430 cells
from five primary gliobastomas, revealing that subtype
classifiers varied across cells in individual tumors. While the
number of samples was smaller than currently achievable with
scRNAseq, the dataset structure typified what could be
processed at larger scale. Upon download, this expression data
was log transformed and quantized for input to EDDY-GPU.

Figure 6 presents two pathways yielded by differential
dependency analysis for a predominantly mesenchymal patient
sample. In the Regulation of the Fanconi anemia pathway, the
FANCD2 gene is identified as an essentiality mediator.
FANCD2 is an important protein in DNA double strand break
repair. It stays connected to ATR in non-mesenchymal cells. In
the mesenchymal cells, FANCD2 disconnects from this
network, but now ATR rewires with ATM, which has a similar
activity to ATR. This is suggestive of a switch in the type of
DNA repair mechanisms and possible lack of DNA double
strand repair in mesenchymal subtype.

IV. DISCUSSION
The analysis of these large datasets provided preliminary

data for characteristics of EDDY’s approach to the statistical
analysis of differential dependency at larger scale. Table 1
presents a table of run statistics on multiple datasets to show
scaling trends at each of three nested loops, with quadratic fit
lines on the logged data. The first panel shows the average
number of possible edges per network identified through the
innermost independence test kernel, which increases slightly
with larger datasets, reflecting the increased power of
increasing the number of samples. In the second panel, the
number of unique networks found, especially as a proportion of

413

��������� ������� ������� ������� ����
�����	�
�������
��
�������
��	�� � ��!
�� � ��" � ��� � �"�
���� � �#� � ��� � ���
��$ � �� � ��" � �!!
�����	�
�
��
���%���� �� !#
�� # �� �� �" �" !!
���� �� !" �� �! �� �
��$ "" !# �# �" "� �!
�
�	������
����%�&� �#
�� � " "
���� " � �� � �# #
��$ �� �� ��

Table 1. Statistical implications for differential dependency analysis
at large-scale. This table present summary statistics (rows) for EDDY
runs of varying numbers of samples (columns). The rightmost column
shows the data for the single run on the large TCGA pan-cancer dataset
from Section III B for comparison. While the proportion of significant
edges increases slightly, the average number of networks decreases,
especially when considered as a proportion of possible networks. The
number of significant pathways increases, reflecting an enhanced
sensitivity with larger sample size.

possible networks, decreases substantially in comparison to
that proportion in smaller datasets, reflecting the diminished
influence of a single sample using leave-one-out resampling.
Nevertheless, the absolute number of networks is comparable
to those found with the smaller datasets, indicating that a
distribution of network scores can still be generated. The
characteristics described above suggest a potential issue with
scaling, motivating investigations into alternative sampling
strategies for larger datasets. In the last panel, as mentioned
above, the proportion of significant pathways found for this
dataset slightly exceeds the proportion found for smaller
datasets, suggesting an enhanced sensitivity due to the
statistical scaling.

V. CONCLUSION
This work has presented a GPU-accelerated EDDY,

demonstrating its acceleration and application to large
datasets. With the decomposition of the independence test
kernel to one thread per edge over multiple resamplings, the
most time-consuming routine was accelerated. However, in
the GPU-accelerated implementation, the scoring kernel then
became the time-limiting module. While there may be means
to address this with a more efficient kernel, the goal of
processing a much larger dataset was achieved. Indeed,
despite the serialization of the outer loop over pathways that
could be distributed in a cluster environment, the acceleration
of the inner loops makes EDDY-GPU analysis feasible on a
desktop. Examination of edge and network counts at large-
scale showed behavior of the differential dependency
approach consistent with the smaller datasets, while a greater
count of discovered pathways demonstrated the advantage of
greater sensitivity with larger sample counts.

VI. AVAILABILITY
EDDY-GPU open-source CUDA and C code is freely

available through github under openBSD license
(https://github.com/dolchan/eddy-gpu).

ACKNOWLEDGMENT
This work was supported in part by the National Cancer

Institute, National Institutes of Health [1U01CA168397] (SK,
GS), the NVIDIA Foundation Compute the Cure Initiative and
the Silicon Valley Community Foundation (SK, GS), and the
Helios Education Foundation through the Helios Scholars at
TGen Summer Internship Program (JJR – 2015, TB – 2016) at
the Translational Genomics Research Institute (TGen) in
Phoenix, AZ.

The authors would like to thank Jeff Kiefer, Harshil Dhruv
and Michael Berens for helpful discussions.

REFERENCES
[1] G. Speyer, J. Kiefer, H. Dhruv, M. Berens, and S. Kim,

"Knowledge-Assisted Approach to Identify Pathways
With Differential Dependencies," Pacific Symposium
on Biocomputing 2016, vol. 21, pp. 33-44, 2016.

[2] S. Jung and S. Kim, "EDDY: a novel statistical gene set
test method to detect differential genetic dependencies,"
Nucleic Acids Research, vol. 42, p. e60, 2014.

[3] S. Zheng, A. D. Cherniack, N. Dewal, R. A. Moffitt, L.
Danilova, B. A. Murray, et al., "Comprehensive Pan-
Genomic Characterization of Adrenocortical
Carcinoma," Cancer Cell, vol. 29, pp. 723-36, May 9
2016.

[4] G. Speyer, D. Mahendra, H. J. Tran, J. Kiefer, S.
Schreiber, P. Clemon, et al., "Differential pathway
dependency discovery associated with drug response
across cancer cell lines," Pacific Symposium on
Biocomputing 2017, vol. 22, pp. 497-508, 2017.

[5] W. Buntine, "Theory refinement on Bayesian
networks," Proceedings of the 8th Conference on
Uncertainty in Artificial Intelligence. UAI '92, pp. 52-
60, 1991.

[6] J. Lin, "Divergence measures based on the shannon
entropy," IEEE Trans Inform Theory, vol. 37, pp. 145-
151, 1991.

[7] G. M. Merrill D, and Grimshaw A, "Scalable GPU
graph traversal," Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP '12, pp. 117-128,
February 2012 2012.

[8] A. Fabregat, K. Sidiropoulos, P. Garapati, M. Gillespie,
K. Hausmann, R. Haw, et al., "The Reactome pathway
Knowledgebase.," Nucleic Acids Research, vol. 44, pp.
D481-D487, 2016.

[9] T. C. G. A. Network, J. Weinstein, E. Collisson, G.
Mills, K. Shaw, B. Ozenberger, et al., "The Cancer
Genome Atlas Pan-Cancer Analysis Project," Nature
Genetics, vol. 45, pp. 1113-1120, 2013.

[10] A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S.
M. Gillespie, H. Wakimoto, et al., "Single-cell RNA-
seq highlights intratumoral heterogeneity in primary
glioblastoma," Science, vol. 344, pp. 1396-1401, 2014.

414

