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Fig 1. Evaluation of Differential DependencY (EDDY) workflow.  For 
a set of samples, the quantized transcriptomic data within a gene set is 
used to construct a network. Through resampling, a distribution of 
networks can be generated. The differentiality between two sample 
groups can then be measured through the divergence of network score 
distributions, with p-value evaluated via permutation test [1] 
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Abstract — EDDY (Evaluation of Differential DependencY) 
interrogates transcriptomic data to identify differential genetic 
dependencies within a biological pathway.  Through its 
probabilistic framework with resampling and permutation, aided 
by the incorporation of annotated gene sets, EDDY demonstrated 
superior sensitivity to other methods.  However, this statistical 
rigor incurs considerable computational cost, limiting its 
application to larger datasets.  The ample and independent 
computation coupled with manageable memory footprint 
positioned EDDY as a strong candidate for graphical processing 
unit (GPU) implementation.  Custom kernels decompose the 
independence test loop, network construction, network 
enumeration, and Bayesian network scoring to accelerate the 
computation.  GPU-accelerated EDDY consistently exhibits two 
orders of magnitude in performance enhancement, allowing the 
statistical rigor of the EDDY algorithm to be applied to larger 
datasets. 

Keywords— EDDY; differential dependency analysis; gene 
regulatory networks; biochemical pathways; GPU 

I. INTRODUCTION 
Computational analyses of large-scale genomic data 

generate a large number of associations and observations that 
can stand as testable hypotheses, but in powering these 
hypotheses, these approaches often incur considerable 
computational burden.  The Evaluation of Differential 
Dependency (EDDY) discovers pathways that manifest their 
activities differently between two groups by computing and 
comparing two dependency network likelihood distributions 
from gene expression data. The method uses resampling to 
estimate network likelihood distributions, then calculates the 
divergence between them, with statistical significance assessed 
through permutation test [2].  EDDY has been successfully 
employed in the analysis of specific cancer types such as 
glioblastoma [1, 2] and adrenocortical carcinoma [3] as well as 
large panel of cancer cell lines [4]. The analysis, if applied to 
the much larger, TCGA pan-cancer dataset, promises 
compelling hypotheses on the heterogeneity of cancer.  
However, EDDY’s computational demand on larger data set 
sizes has proven prohibitively large.  Relief from this 
computational burden has presented itself in the form of 
parallel computing on the Graphical Processing Unit (GPU) 
architecture, as GPU’s possess thousands of computational 
cores that can cope with EDDY’s large but decomposable 
computational burden by processing calculations in parallel. 

II. METHODS 

A. Evaluation of Differential Dependency 
The original Java EDDY algorithm, workflow illustrated in 

Figure 1, begins with the construction of a pathway-specific 
distribution of networks for each of two conditions through an 
inner independence test loop over all possible edges and an 
outer resampling loop.  These groups of Bayesian network 
structures are then distilled to a unique set and individually 
assessed as functions of the data using the Bayes Dirichlet 
(likelihood) equivalent uniform (BDeu) score [5].  The Jensen-
Shannon divergence can then be employed to measure the 
difference of the likelihood distributions of graphs between 
two conditions [6].  An additional outer permutation loop 
around all of these steps is added to test for the significance of 
the divergence, quantified as a p-value, between the 
distributions of network scores.  

Key details of the implementation: 1) Leave-one-out 
resampling was implemented, which generates roughly as 
many networks (before uniqueness filtering) as samples.  2) 
Jensen-Shannon divergences are modeled as a beta 
distribution, with its model parameters estimated from initial 
permutation tests, with the p-value evaluated from the 
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Fig. 2. Scheme of EDDY-GPU.  After transfer of data to GPU, pairwise 
comparisons of co-expression within gene sets are run for both 
conditions over multiple resamplings. Restructuring of edge assessments 
into condensed graph representation allows efficient parallel pairwise 
comparison of networks for a minimum unique set.  Once distributions 
of Bayesian scores are computed across networks for both conditions, 
they are transferred to CPU for divergence calculation. 

estimated models. 3) EDDY also incorporates prior knowledge 
of gene-gene interactions mined from the Pathway Commons 2 
database (http://www.pathwaycommons.org) [1]. Partial 
weighting of known edges allowed for data to determine the 
condition specificity. Probabilistic and gene-set assisted 
approaches together contribute to significantly higher 
sensitivity and specificity of EDDY, compared to other 
methods, such as Gene Set Co-expression Analysis and Gene 
Set Enrichment Analysis [2]. 

In practice, multiple biological pathways are interrogated to 
identify rewired pathways between conditions, with statistical 
significance (p-value < 0.05), as our focus is to generated a 
ranked list of biological pathways of interest.  The multiple 
testing correction can be added as a post-processing if desired. 
While the probabilistic framework (via likelihood 
distributions) and permutation tests result in convoluted 
computational load, this nested loop is easily decomposed and 
distributed to multiple nodes in a multiprocessor environment. 
Hence, the Java implementation has been deployed effectively 
in cluster environments in the analysis of medium-sized 
RNAseq datasets over large sets of biological pathways. 

B. Acceleration on GPU 
EDDY-GPU, a GPU-accelerated EDDY algorithm, utilizes 

the ample and independent computation coupled with 
manageable memory footprint of the algorithm, broken into 
three main computational kernel groups, as shown in Fig. 2.  
RNAseq data for a set of samples, as well as classification 
information of the samples into two condition groups, are 
transferred to the GPU.  The pair-wise independence tests 
between all genes in a gene set used to construct graph edges 
for each condition consume an ample chunk of EDDY’s Java 

computation.  Implemented as a kernel, independent threads 
corresponding to all possible edges, and scaling with the square 
of the number of genes in a pathway, can execute concurrently.  
Only a small, relevant subset of the input expression data is 
required for this computation, demanding a relatively small 
data footprint.  A two-dimensional array, indexed by the pairs 
of nodes, is used to store the edge probabilities, comparable to 
that implemented in the Java version.  Bootstrapped 
resamplings, while further scaling the computation, leverages 
this same data.  Thus, parallel cohorts of independence tests 
process edges for each resampled network, with each network 
calculated in a concurrent block of concurrent threads, and 
return binary edge arrays assessed to a preset threshold. 

A second group of kernels reshapes the data for network 
assessment kernels by first distilling the binary edge arrays into 
the node and edge lists for the condensed graph representation 
[7].  A kernel first determines the size of the edge array for 
allocation.  Then, a subsequent kernel assigns an independent 
thread to each node index within a network block, counting the 
number and annotating the endpoints of the edges determined 
for its node.  This new data representation can now be 
exploited by another pairwise comparison, but this time 
between networks, through a third filter kernel that determines 
the unique networks from the set determined by the 
resampling.  Results from parallel comparisons of node and 
edge lists populate a global array, which is then referenced to 
winnow out the unique networks from the master list on the 
CPU.  In the Java version, a similar Bayesian network data 
structure had also been employed, storing lists of edges by their 
sources and targets.  However, uniqueness of networks was 
tested as each network was serially determined. 

A final kernel scores each network for each of the two 
conditions, thus preparing two arrays for the divergence 
calculation on the CPU.  The BDeu score can be easily 
decomposed into sums of logged gamma functions over states, 
parents and samples, only requiring that the graph be directed 
acyclic, which is easily enforced in the graph construction 
kernel.  The score arrays, upon transfer back to the CPU, are 
used to compute the Jensen-Shannon divergence to assess the 
difference of the likelihood distributions of graphs between 
two conditions. 

An outer loop for permutation testing is employed to assess 
the significance of the divergence score.  Scrambling the class 
labels on the samples, the above routine is repeated to yield a 
null distribution of divergence scores to estimate statistical 
significance.  A final, outermost loop cycles through entire 
annotated pathway databases, such as REACTOME [8] and 
BIOCARTA, further iterating the computation.  Additional 
features from the CPU implementation of EDDY (in Java 
code), such as asymptotic approximation, as well as prior 
knowledge of gene relationships, were also implemented to 
emulate the original Java code. 

III. RESULTS 

A. Verification and Performance 
EDDY-GPU was verified against a dataset run with the 

Java version, with Jensen-Shannon scores agreeing to an 
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Fig 3. Performance of of EDDY-CPU and EDDY-GPU.  Logarithmic 
time (ms) versus gene set size, with four traces per implementation where 
sample size is repeatedly doubled. 

 

Fig 4. Differential Dependency (left) and Condition-specific 
Networks (right) for TGF β receptor signaling in epithelial to 
mesnechymal transition (EMT) pathway.  In this identified network, 
edges specific to samples from either PIK3CA wild type or mutation are 
colored.  All edges shown in lower left.  For greater clarity, shared edges 
are not shown in DDN at top left and CDNs.  The networks reveal a 
dramatic signaling shift between PIK3CA wild type and mutation 
samples in a pathway associated with cancer progression.  Known 
interactions are indicated by solid line edges, while dependencies 
identified solely through independence test are dashed.  Square nodes 
indicate mediators, genes with important roles in the network.   

accuracy of four decimal places.  Performance comparisons 
were made between Java EDDY run on an Intel Xeon 2.3 GHz 
with 33GB of RAM and EDDY-GPU run on a NVIDIA 
Quadro K6000 902 MHz with 12 GB DDR5, with the 
performance accelerated up to 550 times.  Both the number of 
samples and the number of genes in the gene set affect the 
performance.  The scaling behavior of the program depends on 
which of these dimensions is increased, and the CPU and GPU 
implementations exhibit different behavior to this scaling. 

Figure 3 shows several run time trends for the CPU and 
GPU implementations.  The x-axis indicates gene set size, 
while the y-axis indicates the logarithm of run time in ms.  
Four traces are plotted for each implementation varying the 
number of samples.  The slopes of the CPU runtime traces 
increase slightly as gene set size increases, but the distance 
between these traces reveal a greater performance sensitivity to 
sample size doubling.  The slopes of the GPU runtime traces 
are steeper than those for the CPU runtimes, revealing greater 
sensitivity to geneset size.  The distances between GPU 
runtime traces, in response to sample size doubling, appear 
smaller than those for the CPU runtimes, but appear to fan out 
as gene set size increases.  

The gene set size, g, scales the independence test and 
scoring routines as g2.  The performance with sample size is 
also quadratic in the independence test routine with the nested 
contingency table and resampling loops.  In profiling these 
codes, the majority of the compute time for the CPU 
implementation was spent in the independence test, while in 
the GPU implementation the majority of the compute time was 
spent in the scoring kernel.  Thus, the greater spacing between 
the CPU runtime traces.  For the GPU, the independence test 
kernel distributes the processing to one thread per edge, which, 
until the dataset size consumes the compute resources, 
mitigates the quadratic scaling.  Hence, the greatest 
acceleration is seen with large sample size and small gene set 
size.  The scoring kernel, however, decomposes the 
computation across the individual nodes.  As gene set size 
increases, the compute on these nodes increases quadratically, 
accounting for the slope of the traces.  Other factors, such as 

different memory performance issues between the architectures 
likely contribute to the performance differences. 

B. Analysis of Larger Datasets 
1) TCGA Pan-cancer dataset 
 In addition to computational speed up, EDDY-GPU also 

enabled the analysis of a large pan-cancer dataset from TCGA 
of 4,754 samples, an order of magnitude larger than previously 
possible with the original Java implementation, identifying 
significantly rewired pathways between samples classified as 
PIK3CA mutation (465 samples) versus wild type (4,289 
sample) [9].  Runtime performance mirrored that seen for GPU 
traces in Figure 3. 

Over the 479 REACTOME pathways, EDDY-GPU 
identified 79 rewired pathways with statistical significance.  
One result of the increased power due to sample size is that the 
number of pathways is larger than had previously been found 
through hundreds of runs across smaller sample sizes.  This 
will be further discussed in the next section.   

Of the 79 significant pathways, the pathway with the lowest 
p-value, TGF β receptor signaling in epithelial to mesenchymal 
transition, reveals a dramatic rewiring between PIK3CA wild 
type and mutation sample groups.  The differential dependency 
network (DDN) and its constituent condition-specific networks 
(CDNs) for this cancer-associated pathway are shown in Figure 
4.  In the DDN in the lower left, edges determined through 
independence test for each of the two sample groups are 
identified by color.  For clarity, the DDN at top left only shows 
condition-specific edges. 
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Fig 5. PIK3CA mutation (left) and wild type (right) condition-
specific networks for the PI3K AKT Activation Pathway. In these 
CDNs, several mediators are identified, but PIK3CA (highlighted), 
whose mutation status determined the two sample groups, is not one of 
them.  Shared and purely data-derived edges not shown.  

 

Fig 6. Differential Dependency Networks from analysis of a single-
cell RNAseq dataset.  Two significant pathways, PERK regulated gene 
expression (left) and Regulation of the Fanconi anemia (right), contrast 
mesnechymal and non-mesenchymal cell transcriptomes taken from the 
same tumor sample.   

Once the graph is constructed, graphical analysis is 
employed to identify nodes that are “critical” for the network, 
denoting those genes as mediators.  For example, betweenness 
centrality can identify hubs in a network corresponding to 
essentiality of those genes in the biological pathway.  In our 
analysis, we split the network up into PIK3CA wild type and 
mutation networks, calculated betweenness centrality for all 
nodes, and then identified nodes that had the greatest 
betweenness centrality difference between the two networks, 
denoting them essentiality mediators.  Other nodes with 
significant rewiring of condition-specific edges were labeled 
specificity mediators.  In Figure 4, square nodes indicate 
mediators.  The wild type CDN features hub mediators such as 
ARHGEF1B and FKBP1A, while the mutation samples show a 
more fully connected TGF β-mediated network. 

A DDN for another pathway, PI3K AKT Activation, is 
shown at the bottom of Figure 5.  For the 35-node network, 
622 edges of a possible 1,225 were found, but, for clarity, the 
shared and purely data-driven (previously unknown) edges in 
the figure are not shown. Six nodes (NTRK1, NR4A1, CREB1, 
PDPK1, RPS6KB2 and PIK3CB) are essentiality mediators 
and three (PIK3R2, RICTOR and TSC2) are specificity 
mediators.  We note that PIK3CA, the very gene whose 
mutation status determined the sample groups, is not a 
mediator in this network.  Moreover, most of the 79 identified 
networks do not even contain the PIK3CA gene.  Nevertheless, 
EDDY-GPU was able to detect subtle differences resulting 
from downstream or associated effects of the mutation across 
the samples.  

2) Single-cell RNAseq datasets 
Single-cell RNA sequencing (scRNAseq) addresses several 

shortcomings of the population-based average RNA expression 
from bulk tissue analyte collection. In isolating the specific 
RNA profile of individual cells, subtle changes in biological 
behavior are brought into sharp focus. This allows for new 
research leveraging this data to explore biological mechanisms 
such as microevolution, dynamic RNA processes and rare 
disease biology. Moreover, with the ability to characterize 

tissues from a single patient within reach, medicine moves ever 
closer to personalized therapies.  The vast amount data 
(thousands of cells from a single patient) from scRNAseq 
provides a unique opportunity for EDDY-GPU.  

Employing publicly available scRNAseq profiles of 
samples from glioblastoma (GBM) patients with tumors of one 
predominant subtype, differential networks could be used to 
reveal subtle biological distinctions with the remaining cells in 
the sample, shedding light on mechanisms within intratumoral 
heterogeneity [10].  Patel and colleagues profiled 430 cells 
from five primary gliobastomas, revealing that subtype 
classifiers varied across cells in individual tumors.  While the 
number of samples was smaller than currently achievable with 
scRNAseq, the dataset structure typified what could be 
processed at larger scale.  Upon download, this expression data 
was log transformed and quantized for input to EDDY-GPU.  

Figure 6 presents two pathways yielded by differential 
dependency analysis for a predominantly mesenchymal patient 
sample.  In the Regulation of the Fanconi anemia pathway, the 
FANCD2 gene is identified as an essentiality mediator.  
FANCD2 is an important protein in DNA double strand break 
repair. It stays connected to ATR in non-mesenchymal cells. In 
the mesenchymal cells, FANCD2 disconnects from this 
network, but now ATR rewires with ATM, which has a similar 
activity to ATR. This is suggestive of a switch in the type of 
DNA repair mechanisms and possible lack of DNA double 
strand repair in mesenchymal subtype. 

IV. DISCUSSION 
The analysis of these large datasets provided preliminary 

data for characteristics of EDDY’s approach to the statistical 
analysis of differential dependency at larger scale.  Table 1 
presents a table of run statistics on multiple datasets to show 
scaling trends at each of three nested loops, with quadratic fit 
lines on the logged data.  The first panel shows the average 
number of possible edges per network identified through the 
innermost independence test kernel, which increases slightly 
with larger datasets, reflecting the increased power of 
increasing the number of samples.  In the second panel, the 
number of unique networks found, especially as a proportion of 
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Table 1. Statistical implications for differential dependency analysis 
at large-scale. This table present summary statistics (rows) for EDDY 
runs of varying numbers of samples (columns).  The rightmost column 
shows the data for the single run on the large TCGA pan-cancer dataset 
from Section III B for comparison.  While the proportion of significant 
edges increases slightly, the average number of networks decreases, 
especially when considered as a proportion of possible networks.  The 
number of significant pathways increases, reflecting an enhanced 
sensitivity with larger sample size. 

possible networks, decreases substantially in comparison to 
that proportion in smaller datasets, reflecting the diminished 
influence of a single sample using leave-one-out resampling.  
Nevertheless, the absolute number of networks is comparable 
to those found with the smaller datasets, indicating that a 
distribution of network scores can still be generated.  The 
characteristics described above suggest a potential issue with 
scaling, motivating investigations into alternative sampling 
strategies for larger datasets.  In the last panel, as mentioned 
above, the proportion of significant pathways found for this 
dataset slightly exceeds the proportion found for smaller 
datasets, suggesting an enhanced sensitivity due to the 
statistical scaling.   

V. CONCLUSION 
This work has presented a GPU-accelerated EDDY, 

demonstrating its acceleration and application to large 
datasets.  With the decomposition of the independence test 
kernel to one thread per edge over multiple resamplings, the 
most time-consuming routine was accelerated.  However, in 
the GPU-accelerated implementation, the scoring kernel then 
became the time-limiting module.  While there may be means 
to address this with a more efficient kernel, the goal of 
processing a much larger dataset was achieved.  Indeed, 
despite the serialization of the outer loop over pathways that 
could be distributed in a cluster environment, the acceleration 
of the inner loops makes EDDY-GPU analysis feasible on a 
desktop.  Examination of edge and network counts at large-
scale showed behavior of the differential dependency 
approach consistent with the smaller datasets, while a greater 
count of discovered pathways demonstrated the advantage of 
greater sensitivity with larger sample counts.  

VI. AVAILABILITY 
EDDY-GPU open-source CUDA and C code is freely 

available through github under openBSD license 
(https://github.com/dolchan/eddy-gpu). 

ACKNOWLEDGMENT 
This work was supported in part by the National Cancer 

Institute, National Institutes of Health [1U01CA168397] (SK, 
GS), the NVIDIA Foundation Compute the Cure Initiative and 
the Silicon Valley Community Foundation (SK, GS), and the 
Helios Education Foundation through the Helios Scholars at 
TGen Summer Internship Program (JJR – 2015, TB – 2016) at 
the Translational Genomics Research Institute (TGen) in 
Phoenix, AZ. 

The authors would like to thank Jeff Kiefer, Harshil Dhruv 
and Michael Berens for helpful discussions. 

REFERENCES 
[1] G. Speyer, J. Kiefer, H. Dhruv, M. Berens, and S. Kim, 

"Knowledge-Assisted Approach to Identify Pathways 
With Differential Dependencies," Pacific Symposium 
on Biocomputing 2016, vol. 21, pp. 33-44, 2016. 

[2] S. Jung and S. Kim, "EDDY: a novel statistical gene set 
test method to detect differential genetic dependencies," 
Nucleic Acids Research, vol. 42, p. e60, 2014. 

[3] S. Zheng, A. D. Cherniack, N. Dewal, R. A. Moffitt, L. 
Danilova, B. A. Murray, et al., "Comprehensive Pan-
Genomic Characterization of Adrenocortical 
Carcinoma," Cancer Cell, vol. 29, pp. 723-36, May 9 
2016. 

[4] G. Speyer, D. Mahendra, H. J. Tran, J. Kiefer, S. 
Schreiber, P. Clemon, et al., "Differential pathway 
dependency discovery associated with drug response 
across cancer cell lines," Pacific Symposium on 
Biocomputing 2017, vol. 22, pp. 497-508, 2017. 

[5] W. Buntine, "Theory refinement on Bayesian 
networks," Proceedings of the 8th Conference on 
Uncertainty in Artificial Intelligence.  UAI '92, pp. 52-
60, 1991. 

[6] J. Lin, "Divergence measures based on the shannon 
entropy," IEEE Trans Inform Theory, vol. 37, pp. 145-
151, 1991. 

[7] G. M. Merrill D, and Grimshaw A, "Scalable GPU 
graph traversal," Proceedings of the 17th ACM 
SIGPLAN Symposium on Principles and Practice of 
Parallel Programming, PPoPP '12, pp. 117-128, 
February 2012 2012. 

[8] A. Fabregat, K. Sidiropoulos, P. Garapati, M. Gillespie, 
K. Hausmann, R. Haw, et al., "The Reactome pathway 
Knowledgebase.," Nucleic Acids Research, vol. 44, pp. 
D481-D487, 2016. 

[9] T. C. G. A. Network, J. Weinstein, E. Collisson, G. 
Mills, K. Shaw, B. Ozenberger, et al., "The Cancer 
Genome Atlas Pan-Cancer Analysis Project," Nature 
Genetics, vol. 45, pp. 1113-1120, 2013. 

[10] A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S. 
M. Gillespie, H. Wakimoto, et al., "Single-cell RNA-
seq highlights intratumoral heterogeneity in primary 
glioblastoma," Science, vol. 344, pp. 1396-1401, 2014. 

414


