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Abstract

Background: Genomic analysis of drug response can provide unique insights into therapies that can be used to match
the “right drug to the right patient.” However, the process of discovering such therapeutic insights using genomic data is
not straightforward and represents an area of active investigation. EDDY (Evaluation of Differential DependencY),
a statistical test to detect differential statistical dependencies, is one method that leverages genomic data to identify
differential genetic dependencies. EDDY has been used in conjunction with the Cancer Therapeutics Response Portal
(CTRP), a dataset with drug-response measurements for more than 400 small molecules, and RNAseq data of cell lines
in the Cancer Cell Line Encyclopedia (CCLE) to find potential drug-mediator pairs. Mediators were identified as genes
that showed significant change in genetic statistical dependencies within annotated pathways between drug sensitive
and drug non-sensitive cell lines, and the results are presented as a public web-portal (EDDY-CTRP). However, the
interpretability of drug-mediator pairs currently hinders further exploration of these potentially valuable results.

Methods: In this study, we address this challenge by constructing evidence networks built with protein and drug
interactions from the STITCH and STRING interaction databases. STITCH and STRING are sister databases that catalog
known and predicted drug-protein interactions and protein-protein interactions, respectively. Using these two databases,
we have developed a method to construct evidence networks to “explain” the relation between a drug and a mediator.

Results: We applied this approach to drug-mediator relations discovered in EDDY-CTRP analysis and identified evidence
networks for ~70% of drug-mediator pairs where most mediators were not known direct targets for the drug. Constructed
evidence networks enable researchers to contextualize the drug-mediator pair with current research and knowledge. Using
evidence networks, we were able to improve the interpretability of the EDDY-CTRP results by linking the drugs and
mediators with genes associated with both the drug and the mediator.

Conclusion: We anticipate that these evidence networks will help inform EDDY-CTRP results and enhance the generation
of important insights to drug sensitivity that will lead to improved precision medicine applications.
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Background
Response to a drug within a cancer cell involves complex
protein signaling processes dependent on the molecular
context of the cell and the properties of the individual
drug. Transcriptomic data of cancer cell lines coupled
with drug response data constitute a rich data set to
study drug response and underlying molecular mechanisms.
However, the scale of these data presents many unique
analytical challenges. Data driven approaches generate
a large number of associations and observations that
can stand as testable hypotheses. We have utilized this
genomic data in the development of a unique algorithm,
EDDY (Evaluation of Differential DependencY) [1], that
uses gene expression data and conditions to construct
differential dependency networks of given gene sets [2]
between the conditions.
Through statistical interrogation of gene dependencies

within an annotated pathway from a gene network catalog
such as REACTOME [3], EDDY repeatedly constructs
networks from resampled RNAseq data for each of two
conditions. The divergence between the two resulting
distributions of networks can then be assessed for sig-
nificance through permutation test.
EDDY was used with data integrated from the Cancer

Therapeutics Response Portal (CTRP) and the Cancer
Cell Line Encyclopedia (CCLE) [4–6]. The CTRP dataset
contains drug-response measurements for more than
400 small-molecules applied to CCLE cell lines. For each
compound, cell lines were classified as either sensitive or
non-sensitive for analysis by EDDY in order to identify:
1) pathways enriched with differential dependency between
sensitive and non-sensitive cell lines for each compound,
and 2) differential dependency networks (DDNs) that
capture how gene dependency was rewired. We then
identified the genes, termed “mediators”, that played a
significantly different role (based on gene dependency
networks) between cell lines that were sensitive to a
drug and cell lines that were non-sensitive. The details
of this analysis and the results have been published in a
separate article [7]. We will refer to this analysis as
EDDY-CTRP throughout this manuscript.
We predict that these drug-mediator pairs have potential

as testable hypotheses on drug sensitivity and discovery of
novel drug targets. However, the interpretability of these
results serves as a bottleneck on further experimental valid-
ation. Currently, to further understand these drug-mediator
pairs, a researcher must manually search through current
literature, which is often a slow and inefficient process.
Furthermore, the sheer volume of peer-reviewed research
prevents researchers from reliably finding the most pertinent
data to inform these hypotheses.
There are currently multiple databases that can help

alleviate this problem by cataloging drug-protein interac-
tions and protein-protein interactions, such as Pathway

Commons, STITCH, STRING and BioGrid [8–11]. Cur-
rently though, these databases have no easy way of ex-
ploring possible drug-mediator relationships. Some of
these databases allow for researchers to query for both a
drug and a gene but the presentation of the relationships
make no effort to show how the drug and gene may be
related and often end up displaying many irrelevant
genes.
In this study, we attempt to improve the interpretability

of the EDDY-CTRP results by contextualizing the drug-
mediator pairs with current research using evidence
networks generated from the STRING and STITCH
knowledge-bases. For this study, we define evidence
networks as sub-networks of knowledge-bases that
present the most relevant intermediate nodes that
have established functional associations with the drug
and mediator based on prior research. We chose to
use STRING and STITCH as our knowledge-bases for
their comprehensive volume of data and for their dis-
tinction of different types of evidence into separate
association scores.

Methods
STRING and STITCH databases
The edges of the STRING and STITCH network were
downloaded as flat files and were reconstructed into
networks. Each edge in the STRING and STITCH data-
base included scores based on how much evidence
established them and how compelling they are. These
scores were further broken down into sub-scores based
on what type of source the evidence came from. Specific
descriptions of evidences for the edges were downloaded
separately as a PostGreSQL database, which was later quer-
ied against to annotate the generated evidence networks.
In order to maximize the accuracy of chemical matching,

all drugs were reduced to SMILES strings (a string repre-
sentation of a compound’s molecular structure). From their
SMILES strings, drugs were then hashed into their respect-
ive InChIKeys. InChIKeys are encoded strings that are
unique to a chemical structure. The InChIKeys were then
queried against the STITCH database, which also stores
InChIKeys for most of its catalogued chemicals. The use of
InChIKeys helped minimize the number of drugs that are
matched with other drugs that may use the same aliases.
Like STITCH, all InChIKeys were reduced to their non-
stereospecific forms, and all salt forms of compounds were
considered as one compound. All InchiKey conversions
were done using the RDKit open-source cheminformatics
software package [12].

Construction of evidence networks
The evidence network is a network made of a compound
as a starting node, a mediator as a terminal node, and a
set of genes connecting the two. It suggests an evidence-
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supported explanation for why and how the mediator
gene is interacting with the compound.
Evidence networks were generated using a modified

Yen’s K Shortest Paths [13] algorithm with a weight
function of wedge = 1 − Sedge, where Sedge is an evidence
score described above. Hence, edges with higher
scores would be preferred over edges with lower
scores (all scores range from 0 to 1). To generate the
evidence networks, shortest paths between a compound
and a mediator were iteratively found and added to the
network until there were no more paths from the com-
pound to the mediator or until there were at least N
distinct nodes in the sub-network, where N is some

arbitrary threshold. N was not a strict floor, as sometimes
the last path added to the sub-network would add two or
more distinct nodes pushing the total number of distinct
nodes over the threshold. Instead, N was used simply as a
stopping condition and was chosen in order to prevent
generation of evidence networks that would be too over-
whelming for users to interpret. Dijkstra’s Shortest Path
algorithm [14] with a Fibonacci heap [15] was used as the
supporting shortest path algorithm in the modified Yen’s
K-Shortest Paths algorithm, as shown in Algorithm 1.
The motivation for using the k-shortest paths be-

tween the drug and gene is that researchers will most
likely look for relationships between the drug and gene
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that have the best evidence, i.e., the highest overall evi-
dence score, to support them. However, to account for
high redundancy in signaling pathways, the evidence
network is constructed to allow the researcher to see
more than just the most direct path from the drug to
the gene. Multiple shortest paths are found and merged
together in order to form evidence networks that allow
the researcher to explore multiple different possible
relationships.

Extensions of evidence networks
In addition to the methods described above, two additional
extensions of evidence networks were explored. One exten-
sion included exploring the use of single-source evidence
networks constructed by including a mediator and k
number of closest drugs found in the STITCH/STRING
database. These types of evidence networks were initially
employed in the situation where EDDY-CTRP identified a
drug-mediator pair but the drug could not be found in the
STITCH database. If a homologous compound could be
identified, evidence nets could then be constructed using
the homolog as a substitute for the original drug. We
can envision a variety of additional applications for this
extension. For example, in the situation where a mediator
is identified and it appears to play a role in resistance to a
compound, the identification of drugs that are known to
interact, directly or indirectly, with this mediator might
then suggest a possible combination therapy with the
original compound.
In order to preserve the pathway-specific context of

the mediator, a second extension of evidence networks
was explored which constructed evidence subnetworks
for each direct neighbor of a mediator in the original
differential dependency network. The direct neighbors of
a mediator were defined as genes that were directly con-
nected to the mediator in either of the condition-specific
dependency networks for a given mediator. To merge the
direct neighbor evidence subnetworks, a set was created
containing all distinct nodes from each subnetwork with
the addition of the original mediator. Then, for each pair
of nodes in this merged set, we checked the STITCH/
STRING network to see if an edge existed between the
nodes and included it if it did. If there were no paths
between a direct neighbor and the drug, the direct neigh-
bor was still included as a node in the network. Since this
extension required building an evidence subnetwork for
each direct neighbor, the resulting network, while poten-
tially increased in density, often related more clearly to
the original DDN and, thereby, its associated pathway.
This “pathway-weighted” contextualization aims to extend
the filtering of evidence networks, relating the biological
context of the mediator’s original DDN to the compound
and its known targets.

Results
EDDY-CTRP evidence networks
EDDY-CTRP analysis identified 26,822 drug-mediator pairs.
Among those pairs, 19,222 (75%) of them consisted of a
drug and gene that were contained within the STRING and
STITCH databases. Evidence network analysis found 14,415
(70%) pairs with evidence network with 3 or less number of
intermediate genes. Evidence networks were constructed for
14,415 (70%) of the drug-mediator pairs. Evidence networks
were limited to having at most three intermediate genes
between the compound and mediator since compound
and mediators connected with more than three intermedi-
ate genes likely had little relevance to one another. These
evidence networks were integrated into the main EDDY-
CTRP portal as a searchable table. The distribution of
number of intermediate genes for each drug-mediator pair
is shown in Table 1.
We note that 102 evidence networks indeed were direct

compound and mediator relations, among which only 34
of them were intended targets defined in the CTRP data
and annotation. This indicates STITCH contains drug-
target relations that were not included in the CTRP data-
base, but EDDY-CTRP analysis was able to discover those
relations. Most of these evidence networks were for drug-
mediator pairs where mediators were not direct targets of
the drug (according to the CTRP annotation) but had
some known functional association to the drug (based on
STITCH/STRING database).
To allow an interactive presentation of the evidence

networks, a web-portal was created using the JavaScript
library Cytoscape.js [16] and built into the main EDDY-
CTRP web-portal (http://biocomputing.tgen.org/software/
EDDY/CTRP). These evidence networks can be accessed
at two places in the portal. First, in the compound medi-
ator table, (Fig. 1), the evidence nets, where available, are
linked in the penultimate “Ev Net” column. Second, in the
DDN view (Fig. 2), mediators are listed in the upper right
panel. A symbol follows each gene name where an evi-
dence network is available. Once clicked, the evidence net
view (Fig. 3) features: 1) the drug and genes of interest
highlighted along with their functional associations with
other genes, 2) the opacity of each edge mapped to its
overall score, which is determined by the evidence that
characterizes it, 3) brief information for each edge describ-
ing the evidence establishing it, and 4) if further

Table 1 Distribution of the number of intermediate genes in
shortest path between compound and mediator pair

Direct
targets

Indirect targets

# of intermediate genes in shortest path

1 2 3

# of pairs 102 988 3,410 9,915
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information is desired, links to the STITCH or STRING
database for each edge, which gives further details.
To help the user find the most direct paths from the

drug to the gene of interest, the most direct path can be
highlighted by clicking the on-screen button. To explore

alternative paths, the user can also highlight the next
shortest paths by repeatedly clicking the on-screen button
labeled “Next Shortest.” Data channel weights are also in-
cluded in the interface to allow users to weight different
types of evidence based on their preferences. For example,

Fig. 2 Screenshot from EDDY-CTRP portal (http://biocomputing.tgen.org/software/EDDY/CTRP) showing access point to evidence networks in
DDN. Symbols following each mediator listed in upper right panel (highlighted in orange) link directly to evidence networks

Fig. 1 Screenshot from EDDY-CTRP portal (http://biocomputing.tgen.org/software/EDDY/CTRP) showing access point to evidence networks in
mediator table “Ev Net” column (highlighted). The user can filter by compound – mediator distance within the network
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a user who does not find text-mining evidence to be com-
pelling can prioritize text mining scores to “LOW” or
“NONE,” and the edge weights and shortest paths will be
recalculated and redrawn accordingly.

Evidence network corroborates DAPK3’s role as a
mediator for TG-101348
TG-101348 was developed as a selective inhibitor of JAK2
kinase for the treatment of myeloproliferative disorder.
EDDY identified the "ROLE OF DCC IN REGULATING

APOPTOSIS" pathway as an altered differential depend-
ency network for TG-101348. The gene product of DAPK3
was a mediator in this pathway due to high change of
essentiality between the condition-specific dependency
networks. In TG-101348-sensitive cell lines, DAPK3 is
highly connected in the network (Fig. 4a), which likely
indicates that DAPK3 plays a central role in a function-
ing apoptotic network. In the resistant cell lines, how-
ever, DAPK3 is not connected to the rest of the
network (Fig. 4b), indicating that DAPK3 likely plays a

Fig. 4 a Condition-specific dependency network (CDN) for TG-101348 for drug-sensitive cell lines. Dashed lines represent statistical dependencies while
solid lines represent known interactions. Size of nodes represents node essentiality. b CDN for TG-101348 for drug-insensitive cell lines. c
Evidence network for the TG-101348 – DAPK3 drug-mediator pair. All edges represent a known association based from the STRING/STITCH
databases. Blue edges represent mediator-gene associations. Red edges represent drug-gene associations. The yellow edge represents a direct
drug-mediator association

Fig. 3 Screenshot from EDDY-CTRP portal (http://biocomputing.tgen.org/software/EDDY/CTRP) showing “pathway-weighted” evidence network for
BRD-8899 – BRCA2 compound mediator pair. Nodes connected to BRCA2 by non-sensitive condition-specific edges in DDN are highlighted in blue
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role in TG-101348 sensitivity. The evidence network
built for TG-101348 - DAPK3 supports this hypothesis
by showing a direct association between TG-101348
and DAPK3 from the STITCH database (Fig. 4c). In-
deed the evidence link was from a study that showed
TG-101348 can inhibit the kinase activity of DAPK3, indi-
cating that TG-101348 actually does target DAPK3 in
addition to JAK2. Additionally, an association between the
downstream JAK2 modulator and DAPK3 was revealed
suggesting further signaling interactions targeted by TG-
101348 [17]. This example reveals how the evidence net-
work provides further contextual information regarding
the possible mechanisms of how mediators selected in the
EDDY analysis function to alter individual drug responses.

BRD-8899:BRCA2 evidence network discovers novel
interaction between STK33 and DNA repair mechanism
BRD-8899 is employed as a small-molecule inhibitor
of serine/threonine kinase (STK33) activity. The
“HOMOLOGOUS RECOMBINATION REPAIR OF
REPLICATION INDEPENDENT DOUBLE STRAND
BREAKS” pathway was identified by EDDY as significantly
rewired. The rewiring of this pathway could imply a here-
tofore unknown mechanism related to STK33 and DNA
repair. Additionally, if STK33 plays no role in homologous
recombination (HR) repair, this could suggest a possible
secondary target for BRD-8899. Further, in examining the
rewiring between the condition-specific pathways, the me-
diator gene BRCA2 in this pathway can be seen to change
in essentiality, but this time having a more important role
in the non-sensitive cell lines (Fig. 5a and b). This suggests

that the loss of BRCA2 signaling in the double strand
break repair mechanism may play a role in BRD-8899
sensitivity. We can develop our understanding through
examination of the evidence net (Fig. 5c), where we can
see that STK33 does indeed interact with TP53 and heat
shock protein (HSP) 90AA1 which both interact with
BRCA2. Thus, through identifying a role for BRCA2 in
BRD-8899 resistance, we could propose an experiment
employing a combination therapy on non-sensitive cell
lines targeting BRCA2, such as a PARP inhibitor.

Single-source evidence network of CCNH discovers
potential alternative compounds for OSI-027
EDDY analysis of cell lines sensitive and non-sensitive to
OSI-027, an MTOR inhibitor, discovered several significant
pathways, including “RNA POL I TRANSCRIPTION
TERMINATION,” as well as mediators associated with
this network. As no mediator pairings with OSI-027 pro-
duced evidence networks through STITCH/STRING, the
mediators were then analyzed using the single-source
contextualization extension described above. In the
condition-specific networks shown in Fig. 6, the essen-
tiality of one of the mediators, Cyclin H (CCNH, at
bottom of figure) changes dramatically between sensitive
and non-sensitive cell lines, suggesting that CCNH plays a
more important role in the non-sensitive network. A
possible hypothesis for experiment could involve the
perturbation of CCNH in non-sensitive cell lines and
then assessing the efficacy of OSI-027. The single-source
queries for CCNH discover several compounds of poten-
tial interest. One of these, paclitaxel, has been shown in

Fig. 5 a Condition-specific dependency network (CDN) for BRD-8899 for drug-sensitive cell lines. Dashed lines represent statistical dependencies
while solid lines represent known interactions. Size of nodes represents node essentiality. b CDN for BRD-8899 for drug-insensitive cell lines. c
Evidence network for the BRD-8899 – BRCA2 drug-mediator pair. All edges represent a known association based from the STRING/STITCH databases.
Blue edges represent mediator-gene associations. Red edges represent drug-gene associations
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cancer cell line experiments to improve in efficacy when
used in combination with an MTOR-inhibitor [18]. Two
other connections, SNS-032, a cycline-dependent kinase
inhibitor, and emodin, have been shown to inhibit MTOR
activity [19, 20].

Pathway-weighted contextualization of the BRD-
8899:BRCA2 develops additional features of possible
STK33 role in homologous repair
Returning to the BRD-8899 – BRCA2 mediator pair,
nearest neighbors from the original DDN have been
supplemented leading to greater contextual clarity (Fig. 3),
compared to Fig. 5c. The ROCK2 association from the
original evidence network, which did not relate to the
homologous repair pathway, is no longer present, but
new connections related to RAD52, RAD50, NBN and
ATM have been added. ATM and RAD50 have direct
links to STK33, the target of the compound, and
RAD52 and NBN link to STK33 via CDK2. These add-
itional links suggest possible means by which STK33, and
thereby BRD-8899, influences homologous repair. As an es-
sentiality mediator, BRCA2 plays a more significant role in
the non-sensitive network, which manifests as two non-
sensitive specific (blue) edges in the DDN to NBN and
RAD50. In including the two condition-specific nodes,
the evidence net acquires a condition-specific bias. We
develop this idea further in the discussion below.

Discussion
In the effort to support the statistical inferences discovered
by EDDY, the STITCH/STRING databases provided an

abundance of support, which could be filtered using differ-
ent approaches. Employing a naïve shortest paths strategy,
priority was given to the strength of support for edges
while minimizing distance between compound and medi-
ator. However, this approach often risked losing the rele-
vance of the original biological pathway used in the EDDY
discovery. The coupled effect of a promiscuous compound
with a pleiotropic gene could potentially engender numer-
ous unrelated networks. Merging the mediator network
with those of its nearest-neighbors aimed to maintain the
evidentiary focus of the original EDDY inference.
Despite the increased density of nodes in some of these

evidence networks, the inclusion of neighbors allows for
the possibility of exploring the nuances of differentiality
revealed by EDDY, producing condition-specific evidence
networks, mirroring the condition-specific dependency
networks generated by EDDY. These are particularly
compelling in the case of specificity mediators, which
have been identified for their significant rewiring between
conditions. In Figs. 2 and 5, the specificity mediator RAD50
has edges with BRIP1 and MDC1 for sensitive samples and
edges with BRCA2, MRE11A and RPA2 for non-sensitive
samples. These neighbors can be integrated into separate
condition-specific evidence networks, as shown in Fig. 7.

Conclusion
In this project, we have improved the interpretability of
the EDDY-CTRP results by generating evidence networks
of the most relevant intermediate genes using the STRING
and STITCH knowledge-bases. With these evidence
networks and our Cytoscape.js-based user interface, we

Fig. 6 a Condition-specific dependency network (CDN) for OSI-027 for drug-sensitive cell lines. Dashed lines represent statistical dependencies
while solid lines represent known interactions. Size of nodes represents node essentiality. b CDN for OSI-027 for drug-insensitive cell lines. Shared
(grey) edges are hidden for clarity in both CDNs. c Single-source evidence network for the CCNH mediator. All edges represent a known association
based from the STRING/STITCH databases
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expect that the EDDY-CTRP results can be used to form
hypotheses based on these contextualized drug-mediator
pairs.
Besides facilitating drug-mediator pair interpretation,

evidence networks can be used in a more flexible manner,
such as when single-ended evidence networks were
employed to identify candidate compounds for interaction
with a mediator. Furthermore, integration of network infor-
mation for a mediator’s neighbors can preserve the pathway
context of the original DDN. We furthered this synthesis of
DDN and evidence network information through the in-
corporation of condition-specific neighbor nodes.
In the future, we hope to generalize these evidence

networks so they can be used with other knowledge
bases and with other drug-gene pairs. Other methods
such as high-throughput drug screening generate drug-
gene hypotheses similar to EDDY-CTRP and would benefit
from an algorithmic approach to contextualizing these hy-
potheses with current research. In future iterations, we aim
to use alternative algorithms to Yen’s K Shortest Paths such
as Eppstein’s K Shortest Paths [21] in order to optimize the
speed at which the evidence networks are generated. With
faster support algorithms, it could be possible to create
an interface that would allow researchers to query any
drug-gene pair they might be interested in and receive
an on-the-fly generated evidence network.
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